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The Economic Impact of R&D Tax Incentives: 
Evidence using Regression Discontinuity Design 

Russell Thomson,1 Trevor Kollmann,1 and Nobuaki Yamashita12 

Abstract: We employ a regression discontinuity design to estimate the causal impact of R&D tax 

incentives, exploiting a feature of the Australian policy which provides a higher level of support 

for companies with a turnover below A$20m.We estimate the policy generates an additional $1.61 

R&D per dollar of tax revenue foregone. To understand the economic impact of this spending, we 

estimate the effect of own and external R&D stock on firm productivity, then use the estimated 

marginal product coefficients to calculate the implied economy wide marginal social return. Our 

results imply that $1 of eligible R&D generates an additional $3.10 via higher economy-wide 

production. Putting these together, we arrive at a net present value of the economy-wide benefit of 

the R&D tax incentive policy of $4.99 per dollar of revenue forgone. 

1 Centre for Transformative Innovation, Swinburne University of Technology, Melbourne, Australia 
2 School of International Politics, Economics and Communication, Aoyama Gakuin University, Tokyo, Japan 
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1. Introduction 
R&D tax incentives are among the most common policy tools to promote innovation and foster 

economic growth. In 2022, 33 out of the 38 OECD member countries offered tax incentives for 

R&D expenditures (OECD, 2023). Measuring the economic benefits of such subsidies requires an 

estimate of both the extent of additional private investment in R&D as well as the ensuing 

productivity benefits. It is notoriously difficult to statistically identify the causal impact of tax 

incentives because, by design, equivalent firms investing in equivalent research activity are 

eligible for the same level of effective subsidy. We provide new evidence of the causal impact of 

the R&D tax incentive program in Australia using regression discontinuity design (RD design) at 

the A$20 million turnover threshold that determines eligibility for a higher incentive rate. To assess 

the economy wide impact of R&D supported by the scheme we estimate productivity impact of 

eligible R&D spending using the approach proposed by Bloom et al., (2020). We find that each 

dollar of tax revenue forgone induces an additional $1.61 R&D investment which results in $4.99 

total economic benefit. 

The efficacy of R&D tax incentives has been heavily studied, though until recently 

compelling causal design has seldom been forthcoming. A key benefit of tax incentives, relative 

to competitive grants, is market-based allocation of effective subsidy; all firms undertaking eligible 

activity can benefit. Identification is difficult because firm-level data typically reflect little 

exogenous variation in the rate of subsidy. Identification in some contexts, including the US, has 

faced the additional complication that tax credits have been targeted at incremental R&D 
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spending. 2 In these contexts, identification has been based on ‘internal’ style instrumenting 

approaches (Hall, 1992; Dagenais et al., 1997); cost of financial capital (Thomson 2010); and more 

recently, changes in the tax code (Rao, 2016). An alternative approach has been to use variation in 

tax policy between countries (or states) over time to identify the effect of tax incentives on 

aggregate cross-country (or state) R&D (Bloom et al., 2002; Guellec & Van Pottelsberghe, 2003; 

Falk, 2006; Wilson 2009; Thomson and Jensen, 2013).3 This cross-jurisdiction approach also lacks 

a formal causal design to compellingly separate the effect of (relatively infrequent) policy reform 

from other contemporaneous factors driving variation in R&D.  

More recently, the application of quasi-experimental approaches has made important 

inroads in identifying the causal effect of R&D tax subsidies. Difference-in-Differences (DID) has 

been applied to reforms in the UK in 2008 (Guceri and Liu 2019); the Canadian small business tax 

incentive, targeted at firms with turnover below C$500,000 (Agrawal et al., 2020); reform to the 

Australian R&D tax code in 2012 (Holt et al., 2021) and shift to a threshold for eligibility small 

firm tax benefit in in India in 2011 (Ivus et al., 2021). 

Regression discontinuity design (RD design) provides a compelling causal design for 

entitlement policies that feature specific subsidies for small firms, a common feature of policy 

design. RD design allows for an unbiased and consistent causal estimate within the neighbourhood 

of the cut-off so long as participants cannot precisely manipulate their position vis-à-vis the 

2 Incremental investment refers to the component of R&D spending that is over and above some historic base level of 
investment, typically operationalized as expenditure over and above a moving average spend in the preceding years. 
Early schemes in the US, Australia and initially Canada embodied this design feature. 
3 Thomson (2017) proposed an alternative industry-by-country level approach, combining cross-industry variation in 
R&D capital intensity with cross-country variation in tax policy. 
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threshold (Lee 2008).4 Dechezleprêtre et al., (2023) implement a fuzzy RD design based on 

changes to the size threshold determining eligibility for more generous support in the United 

Kingdom. Using both traditional RD design and difference-in-discontinuity, the authors focus on 

the impact of the R&D tax incentives on patenting behaviour. 

A principal disadvantage of RD design relates to external validity; estimates are valid 

proximate to the policy threshold considered. In this regard, the cut-off threshold for the policy 

studied by Dechezleprêtre et al., (2023) is the margin between medium and large firms, defined as 

employing 499 employees and either balance sheet under €86 (US$90) million assets or €100 

(US$105) million turnover.5 Although firms above this threshold are responsible for a great share 

of business expenditure on R&D, there is considerable interest in also understanding the efficacy 

of tax incentives on smaller firms, which are often the targets of focused innovation policy. Small 

firms are often considered to be crucial incubators of radical science intensive technology and are 

particularly sensitive to the cost of capital (Rosen 1991; Schneider and Veugelers 2010; Cohen 

2010; Veuglers et al., 2019). Perhaps equally pertinent, Dechezleprêtre et al., (2023) data span the 

period immediately after the 2008 global financial crisis which was characterised by an extreme 

credit constrained environment. It is widely understood that the magnitude of the effect of R&D 

subsidies is likely conditional on a firms’ financial constraint (see e.g., Dechezleprêtre et al.,2023). 

4 Several key prior studies have employed RD design to examine the effects of government grants on business R&D 
(Bronzini and Piselli, 2016; Howell, 2017). 
5 An implication of this threshold is that the authors’ main result rests on only 200 patenting firms which claim the 
subsidy. See Dechezleprêtre et al. (2023), Table A7. 

4 



 

 

        

   

       

         

       

           

      

     

        

      

       

       

 

       

       

       

        

        

 

           
       

         

More generally, it is well recognized that technology policy impact can be contingent on 

macroeconomic conditions (Guceri and Albinowski 2021).6 

We apply a sharp RD design to evaluate and measure the additionality achieved by the 

R&D tax incentive policy in Australia. The R&D tax incentive program in Australia provides a 

higher rate of benefit to small firms, defined by a turnover below A$20 million (US$13.5 million). 

The Australian context embodies several features which make it in some ways an ideal context for 

the implementation of RD design. The policy relies solely on current year business turnover to 

determine eligibility for the higher rate of incentive. Turnover is readily observable and relatively 

difficult to manipulate over a sustained period.7 Moreover, as we are comparing two levels of 

effective subsidy, the likelihood of conflating change in real R&D investment with reclassification 

of existing expenses is minimal. By definition, spurious reclassification has negligible real cost so 

it is unlikely that a marginally higher rate of subsidy will induce additional reclassification. Our 

study also considers a period of relative macroeconomic stability. 

Our second key contribution is to measure the economy wide benefits of the R&D tax 

incentive scheme by estimating the productivity benefits of eligible R&D spending. Empirical 

estimates of the productivity enhancing effect of R&D tax incentives are surprisingly rare with 

most evaluations focusing on the amount of additional R&D induced, reporting either the tax price 

elasticity or ‘value for money’ ratio. We use confidential firm-level data for the population of 

6 More generally, how R&D investments change in periods of economic crisis period has been extensively studied 
(e.g. Nicholas 2008; Gordon 2018; Yamashita 2021). 
7 Opportunistic timing of asset disposal to inflate earnings. 
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Australian firms to estimate the productivity effect of investment funded via the R&D tax incentive 

policy using the approach developed by Bloom et al., (2013). 

We find that the higher refundable offset induces statistically and economically significant 

additional R&D investment relative to the lower non-refundable offset. Our results suggest that 

the higher rate of subsidy provided to firms with a turnover below A$20 million induces 

investment of an additional A$1.61 of R&D per dollar of tax revenue foregone. We estimate that 

an increase of A$1 in the stock of R&D generates an additional A$0.46 output. Putting these 

together, we arrive at a net present value of the economy-wide benefit of R&D tax incentive policy 

of $4.99 per dollar of revenue forgone. 

2. Policy Context and Data Sources 
Australian tax incentives aimed to foster private R&D were initially introduced in 1985 

and have since been adjusted and reformed many times.8 Our analysis focuses on the policy 

introduced in 2011,9 called the R&D Tax Incentive Program (R&DTI). The R&DTI is a large-

scale government initiative; in the 2019-20 financial year, the program registered A$12.7 billion 

in R&D expenditures from 14,040 businesses (Industry Innovation and Science Australia, 2021). 

In the same year, the impact of the scheme on the government revenue was A$2.7 billion (DISER, 

2021). The R&DTI has received several minor changes since its inception, summarized in Table 

1. 

8 Information on earlier schemes can be found in Thomson, (2010). 
9 A financial year in Australia is from 1 July through 30 June. 
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The R&DTI program comprises a 45 percent offset for small companies (defined as firms 

with an aggregate current year turnover under A$20 million) and a 40 percent offset for large 

companies (aggregate turnover exceeding A$20 million). The 45 percent R&D tax offset is 

refundable, which means that companies with eligible expenditure and no tax liabilities can receive 

a reimbursement corresponding to any unused offset amount. The 40 percent R&D tax offset is 

non-refundable, however any residual balance can be carried forward against future tax liability.10 

[Table 1] 

Data 

Our data come from the Australian Bureau of Statistics (2021), Business Longitudinal Analysis 

Data Environment (BLADE). The data modules within BLADE contain integrated financial, 

innovation and business characteristics for more than 2 million active businesses in Australia.11 

Financial information comes from tax returns lodged with the Australian Taxation Office via 

quarterly Business Activity Statements and annual Business Income Tax statements. Financial data 

is provided to the ABS at the Australian Business Number level, which informally corresponds to 

a single establishment, or branch in the case of large complex companies. R&D expenditures are 

based on the eligible expenditures provided by the Australian Taxation Office. Additional 

robustness and falsification tests use financial data from Business Income Tax as well as Pay-As-

You-Go (PAYG) statements from the Australian Taxation Office. Alternative innovation 

10 The value of non-refundable offsets therefore depends on the firm’s idiosyncratic discount rate and the number of 
years before the firm generates a taxable profit. 
11 This statistic is based on the number of ABNs reporting financial information to the Australian Tax Office (ATO) 
during the period of study. 
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outcomes - patents, trademarks and design rights are drawn from IP Australia.12 We include 

businesses whose aggregate turnovers fall within a neighbourhood (described below) around the 

refundable offset eligibility cut-off of A$20 million.13 

For complex (multi-subsidiary) businesses, eligibility for the small firm incentive rate is 

based on aggregate turnover. Ownership relationships are not generally coded in administrative 

tax databases. We use two available approaches to identify group membership. First, the Australian 

Bureau of Statistics maintains a population of ‘profiled’ businesses, recording their legal structure 

and provide unique Enterprise Group identifiers. Unfortunately, not all ownership relationships 

are captured by the profiled population. 14 To identify non-profiled complex firms, we take 

advantage of a feature of the Australian tax code that allows complex firms with common 

ownership to report consolidated sales for Goods and Services Tax (GST Group).15 

Our main focus is firms with non-zero R&D expenditures in any of the fiscal years between 

2012-13 and 2019-20. Foreign controlled firms16 were removed from the sample, because it is not 

possible to verify the aggregate turnover of foreign owned firms, as business activity outside 

Australia is not recorded by the Australian Taxation Office. Since the data come from company 

12 IP Australia Intellectual Property Longitudinal Research Data (IPLORD) 
13 Aggregate turnover was based on turnover supplied by the firms within their reported BAS which are filed quarterly 
with the ATO. 
14 ABS the population of profiled firms is determined by ABS based on principles that: (a) they operate through 
multiple legal entities (b) over $250m in turnover or $25m wages annually (as a group of entities) and (b) not be able 
to accurately represent themselves as individual ABN units for statistical purposes (ABS pers comm.) 
15 Firms are incentivized to report as a GST Group as it allows sales of goods and services between GST group 
members to not be subject to GST. These firms must have at least 90 per cent common ownership. We exploit the 
ABS procedure which apportions group financials equally to identify GST group members. 
16 Operationalized as firms with 10 percent or more foreign shareholding. 
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tax returns, they are subject to the usual legal accounting standards. Nonetheless, data were cross 

verified between available information within each company tax return. For example, observations 

were dropped if the value of offset claimed did not match the total reported R&D expenditure.17 

We also removed firms which claimed the lower (large firm) tax offset rate but reported aggregate 

turnover below $20 million which is understood to reflect incomplete aggregation of financials for 

complex company groups.18 After cleaning, our primary regression is based on the 3,736 unique 

firms which claimed the incentive over the period and 9,661 firm-year observations. 

3. Empirical Strategy 
The R&DTI has a well-defined treatment discontinuity for firms at an aggregate turnover 

of $20 million. We use the following equation as our baseline to estimate the treatment effects of 

being eligible for the refundable R&D tax offset rate: 

��� �&�! = � + �[1|�������� < $20�������] + �(��� ��������) + �! (1) 

where ��� �&�! is firm �’s Log R&D spending, [1|�������� < $20�������] is an indicator if a 

firm’s turnover is under $20 million and thus eligible for the refundable higher R&D tax offset 

rate, and �(⋅) a polynomial which is a function of the running variable, Log Turnover. We estimate 

this using OLS and as our sample pools observations over the period between 2012-13 and 2019-

20, we cluster the standard errors at firm-level. The optimal asymmetric bandwidth for each model 

17 This affected 8 percent of potential firms. Based on advice from Department of Industry, Science and Resources 
and the ATO we understand this may reflect a revision to part of the tax return. 
18 Errors in aggregation can occur where firms have not been included in ABS profiled population and choose not to 
report via GST groups. This can also occur due to timing inconsistencies between corporate income tax reporting and 
merger and acquisition activity. We drop all observations for any firm that reports an inconsistency in any year, not 
solely the affected year, this affects 10 percent of our potential population of firms. The converse situation, errors 
whereby firms with observable turnover above $20 million claim the small firm rate occurs only 2.6 percent of firms. 
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was selected using methods developed by Imbens and Kalyanaraman (2012) and Calonico et al., 

(2014). 

Causal inference in regression discontinuity design requires that firms are not able to 

manipulate their treatment status (Lee 2008). The Australian policy change that we focus on is 

based only on the turnover criteria which renders little room for manipulation of the eligibility for 

generous tax benefits. Additionally, we undertake non-parametric discontinuity in density test 

procedure described by Cattaneo et al., (2020). Results of these, presented in regression Table 2, 

suggest no significant discontinuity in the density around the cut-off point. 

Firms within the refundable offset group spend A$821 thousand on average on R&D. On 

average, firms above the turnover threshold which are eligible for the offset rate spend more on 

R&D; an average of $1,264 thousand per firm. The positive association between turnover and 

R&D expenditure is consistent with well-known patterns and does not violate the assumption of 

RD design. 

4. Results 
We first consider visual inspection of the expected discontinuity at A$20 million turnover 

threshold. Figure 1 depicts the relationship between turnover and R&D (both in logs) for the 

primary regression sample. It is not possible to graph individual firms due to confidentiality 

restrictions on company tax return data. Each observation on Figure 1 therefore represents the 

average R&D spend for groups of firms within turnover bins with a fixed width of 0.04 log points. 

Each bin represents on average 172 firms. The fitted lines illustrate the predictions from locally 
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weighted scatterplot smoothing (LOWESS) 19 regression on either side of the A$20 million 

discontinuity. The LOWESS regression lines reveal a steady positive relationship between 

turnover and R&D as turnover increases toward the threshold followed by a sharp decrease in 

average R&D followed by a return to a positive relationship, albeit at a steeper gradient. The 

provides a priori evidence of a discontinuity at the A$20 million threshold for eligibility for the 

more generous subsidy rate which we formally interrogate using econometric RD design. 

[Figure 1] 

Table 2 reports baseline RD design estimates. Recall that firms with a turnover under A$20 

million are eligible for the higher value of refundable R&D tax offset. All regressions control for 

a linear term of the running variable (Turnover), an interaction between Turnover and treatment 

status (i.e., Turnover under A$20 million) and year fixed effects. We also implemented the local 

polynomial method suggested by Cattaneo et al., (2020) which implements a data-driven technique 

to select the optimal bandwidth. To see the sensitivity of the chosen bandwidth, we also report a 

set of alternative bandwidths as a robustness check, described below and reported in Table 4. For 

each regression sample, we undertake the test for discontinuity in distribution proposed by 

Cattaneo et al., (2020) and in each case we fail to reject the null hypothesis, suggesting that firms 

were not able to significantly manipulate their turnover to obtain a higher offset rate. 

Column 1 of Table 2 reveals an estimated coefficient on this discontinuity is 0.257. This 

translates into a 29% increase in R&D expenditure for those firms below the cutoff as compared 

19 A local linear regression using a tri-cube weighting function (Cleveland 1979) 
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to those above the cutoff.20 To further examine the robustness to functional form assumption we 

augment the model with higher order terms in the running variable and their interaction with firm 

treatment status (Cook 2008). Results are presented in columns 2 include the quadratic term and 

in column 3 we also add the cubic term. 

Almond and Doyle (2011) propose applying a ‘doughnut method’, whereby observations 

within 5% of threshold are removed from the estimating sample to accommodate any possible 

manipulation around the cutoff point. Results using this approach are reported in column (4). In 

column (5), we perform the nonparametric robust bias-corrected inference method (Calonico et al., 

2014). As shown, the estimated coefficient on the assignment variable remains largely unchanged. 

We also investigate the extent to which our results may be driven by the behaviour of firms 

whose turnover fluctuates such that they qualify for the higher rate of incentive in some years but 

do not qualify in others. To do this, we re-run the baseline regression excluding firms having 

crossed the cutoff more than once. Results are presented in column (6), and show the estimated 

treatment effect virtually remains almost the same as the baseline results in column (1). In column 

(7) we re-estimate the RD design based on the sample of firms which did cross the eligibility 

threshold more than once. We note that the estimated coefficient is slightly larger, perhaps 

reflecting some opportunistic behaviour among those firms, although not statistically significantly 

different than the coefficient estimates reported in column (6). 

[Table 2] 

Percentage change: �!.#$% − 1 20 
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Bandwidth Selection 

To ensure that our results are not excessively sensitive to the choice of bandwidth, we conducted 

a grid search of the bandwidth window, varying the upper and lower bandwidth in increments of 

0.15 log points (from 0.3 to 2.25) in Table 3. Results show that the estimated coefficient is 

reasonably stable across relevant windows of bandwidth (Table 3). In particular, the results are 

robust with symmetric bandwidth, as was common in older RD design applications. 

[Table 3] 

Extensive Margin 

The results presented above document a positive impact of the more generous tax offset on R&D 

expenditure. We also consider whether this policy impact induces increases in the extensive 

margin – that is, whether eligibility to the more generous rebate incentivizes firms to become R&D 

active. Column 1 of Table 4 shows the results of a linear probability model with an indicator 

variable which takes the value to 1 if a firm report any R&D expenditures and zero otherwise. The 

estimating sample includes all firm-year observations for all Australian firms within the turnover 

bandwidth. Column 2 uses the nonparametric robust bias-corrected inference method (Calonico et 

al., 2014). Both results indicate that the higher offset rate induces a 2 percentage point increase in 

the likelihood of firms engaging in qualifying R&D activities. We note that this finding contrasts 

with Dechezleprêtre et al., (2023) who find tax incentives have no impact on the extensive margin 

for R&D, but that they do effect the extensive margin for patenting. 

In column (3), we combine the sample of intensive and extensive margins by setting the 

dependent variable as the log R&D for the full sample of firms within BLADE, rather than just the 
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firm-years for firms with positive R&D expenditures.21 Using the full sample, the coefficient 

estimates remain quite stable when compared to the results of Table 2. 

[Table 4] 

Impact on Measures of Research Output 

Table 5 reports estimates for analogous RD Design models using alternative outcome measures 

which might be anticipated to be influenced by R&D tax incentives, including patents, trademarks 

and design rights. To account for the lead time required to convert R&D expenditures to IP 

registrations we consider aggregate registrations of each IP application over three years periods. 

Estimations reveal no statistically significant coefficient estimates on the treatment assignment 

variable. We speculate that the lack of observable policy impact on these outcome measures may 

reflect that the quantum of R&D induced may not translate to an observable difference in 

registrations such as patenting, especially since additional R&D is anticipated to result in increased 

IP registrations after a stochastic lag, adding further noise. Though we also note that firms at our 

margin of interest are not intensive applicants of patents or design rights owing to their size.22 

[Table 5] 

Falsification Tests 

We undertake two common falsification tests. The first is to estimate analogous models of 

alternative outcome variables which are not expected to exhibit discontinuity at the cutoff, namely 

21 To account for firms reporting zero, R&D, we do a standard adjustment of adding $1 to R&D prior to the log 
transformation. 
22 The share of R&D active firms within the bandwidth which register any patents, trademarks and design rights over 
a three year period are 0.08, 0.26 and 0.04, respectively. 
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wages, employment, and tangible investment. Results are presented in Table 6. In all cases, we do 

not find any statistically significant treatment effect of being below the cutoff. This result also 

supports the assumption of RD design that firm characteristics are similar at the cut-off. 

[Table 6] 

Our second falsification test is to test for structural breaks in R&D at alternative turnover 

thresholds (where no policy discontinuity applies). We implement this approach using the local 

polynomial optimal bandwidth estimator discussed by Calonico et al., (2014). To avoid potential 

contamination with the actual treatment effect we use only the treated observations when artificial 

cut-offs are below the true cut-off of A$20 million and only control observations for artificial cut-

offs above (Cattaneo et al., 2020). Figure 2 reports the coefficient estimates of interest and their 

corresponding 90% confidence intervals. The only statistically significant coefficient estimate is 

at the true cut-off of A$20 million. Coefficients at all other artificial cut-offs are not statistically 

different from zero. These results demonstrate that the only observable discontinuity in R&D falls 

at the treatment threshold.23 

[Figure 2] 

Value for Money Ratio 

To interpret the magnitude of the causal estimate for R&D tax incentives, we calculate the ‘value 

for money’ ratio, which is sometimes referred to as the additionality ratio defined as the amount 

of additional R&D for every dollar of tax revenue forgone. We estimate the additionality of the 

23 Estimating the same models using OLS yields consistent results. 
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refundable 45 percent offset as compared to the non-refundable 40 percent offset. To make the 

calculation tractable, we assume that the amount of induced R&D is entirely attributable to the 

higher rate of offset, not to earlier access to benefits for firms with exhausted tax liabilities under 

the rebate scheme.24 

The main estimate in Section 4 suggests a treatment effect of 29 percent greater claimable 

R&D expenses. As we estimate the treatment effect in dollars of R&D (rather than, for example, 

a count of additional patents), we can directly obtain the additionality ratio (value for money ratio) 

as:25 

∆�&� ∆�&� 0.29 (2)
∆��� ������� ������� 

= 
∆������ × �&� + ∆�&� × ������ 

= 
$0.05 + 0.29 × $0.45 

= 1.61 

Note that the first term in the denominator reflects the cost of subsidizing inframarginal R&D 

(R&D already being undertaken at the lower subsidy level sub subject to the higher rate of subsidy) 

and the second term reflects the cost to revenue of the marginal (induced) R&D. If the estimated 

effect is attributed to the higher offset rate, it amounts to the additionality (value for money ratio) 

of 1.61 for R&D per dollar of tax revenue foregone. Based on the difference in tax price between 

24 Firms with no tax liabilities in a claiming year are able to carry forward unused tax credits to future years. This 
means the effective value may be discounted depending on the firm’s discount rates as well as the number of years 
before the firm earns a taxable profit. 
25 Second, we have not explicitly modelled the difference in refundability between the large and small firm policy. 
For those large firms with exhausted tax liabilities, non-refundable offsets can be carried forward to reduce future tax 
liabilities, using population average delays and representative discount rates suggests a small difference in value; 
though we acknowledge this may be larger for firms with high idiosyncratic discount rates. 
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the small and large firm scheme (40 vs 45 percent credit) the implied tax price elasticity of R&D 

is equal to 3.5.26 

This estimate is reasonably similar to the previous literature. Though we note it is somewhat 

smaller than estimated by Dechezleprêtre et al., (2023) who find a tax price elasticity of 4.1 and a 

value for money ratio of 2.34. This difference may reflect that smaller firms analyzed here are 

intrinsically less responsive to R&D tax incentives. Alternatively, it may reflect heightened 

sensitivity to liquidity due to the global financial crisis concurrent with the latter study. 

5. Economic Impact 
The first order impact of R&D tax incentives is to induce firms to invest more in R&D. 

Productivity spillovers arising from such R&D are the most common justification for public 

support of private R&D (Bloom et al., 2019). Measuring the total economic benefit of R&D tax 

subsidies requires an estimate of productivity gains from induced R&D (the private rate of return) 

and their spillover effects on the adjacent firms (the external rate of return). Yet, empirical work 

which include estimates of the productivity enhancing effect of R&D supported by R&D tax 

incentives is surprisingly rare, with most economic evaluations of R&D tax incentives focusing on 

the impact of implicit subsidies on R&D spending.27 

26 The tax price elasticity is calculated ratio 0.29 to the proportional difference in the user cost of capital, where the 
user cost or R&D capital is given by ('()) (� + �) where A is the value of credits and deductions on R&D & � is the ('(+) 
corporate income tax rate. 
27 For grant-based subsidies, Crespi et al., (2020) estimate the direct and spillover effects of two separate R&D grant 
schemes designed to promote firm-level research and development (R&D) investment in Chile on firm productivity 
of other non-participating firms. 
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To estimate the overall economic impact of the R&D tax incentive in Australia we 

complement our estimate of value for money ratio with bespoke estimates of the economic returns 

to eligible expenditure (all spending claimed against the policy) using data covering the population 

claiming firms over the period 2002-2019. To do this, we first estimate the effect of own and 

external R&D stock on firm productivity, then use the estimated marginal product coefficients to 

calculate the implied economy wide marginal social return (MSR) – i.e., the increase in aggregate 

output generated by a marginal increase in firm i’s R&D stock – following the approach of Bloom 

et al., (2013). We outline the key results and their implications here; additional details of the data 

and estimation are included in the appendix. 

To estimate productivity effect of the stock of eligible R&D investment (henceforth referred 

to as R&D stock) we follow the common two-stage procedure whereby we first estimate firm-

level total factor productivity (TFP) and then estimate the effect of own and external R&D stock 

on this. To derive the total factor productivity (TFP) for each firm in each year we use the control 

function approach of Ackerberg, Caves and Frazer (2015) (ACF). The ACF approach 

accommodates simultaneity of inputs and endogenous exit using a control function based on 

purchases of intermediate inputs. We allow for parameter heterogeneity by estimating separate 

production functions for firms in each of the 15 industry divisions.28 Data used for these production 

function estimates are defined and summarized at Table A2. We report a full set of resulting input 

coefficients estimated using both ACF and OLS at appendix A1. 

28 We omit mining (B), financial services (K), public administration (N) and administrative support (O) based on 
relevance or the fact that production functions estimated for resulted in unreasonable input coefficients, e.g., a 
complexity in mining productivity is ore quality & financial services face complexities with separating tangible from 
financial capital. 
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In a second step we model the effect of own and external R&D stock on firm-level TFP. 

Following Bakhtiari and Breunig, (2018) we focus on R&D spillovers within the same state. The 

estimating equation is given at equation (3). 

!&"'( + �)�!"$#!&"*' + �+���!" = �#�!"$# + �%�!"$# + �" + �!" (3) 

where ���!" �!" and �!" reflects firms own and external stock of R&D for firm � in year �. 

External R&D stock (�!") is further decomposed to allow for separate estimate of intra- and inter-

industry spillovers. Specifically, we include the unweighted sum of R&D stock of firms in the 

same 2 digit industry (intra-industry) in the same State B�!"#$!%"&'C and the unweighted sum of R&D 

!%"(&C.stock with other industries in the same State B�!"#$ 
29 The parameters of interest for our analysis 

are �$ (own R&D elasticity of output) and �, (�ntra-industry spillovers) and �-, (inter-industry 

spillovers). We include state, industry and year fixed effects to control for specific technological 

opportunity, inter alia. Following Bloom et al (2013) we also include four-digit industry 

time-varying controls, defined as the annual average turnover in each industry, to capture common 

transitory shocks that might affect industry level unit cost of R&D. 

Estimates are reported in Table 7. Column (1) present a simple baseline OLS log-linear 

Cobb Douglas production function incorporating the R&D stock measures where the dependent 

variable is value added. Column (2) models TFP, via a first stage using ACF for the pooled sample. 

Column (3) models TFP which has been estimated via 15 industry-specific production functions 

estimated using ACF. Finally, Column (4) augments the model by including industry average real 

29 We use the unweighted measure of a pool of external R&D stock since symmetric of inter-industry impact is an 
assumption for approximating rate of return from output elasticities (see Bloom et al., 2013). 
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value added, suggested by Bloom et al. (2013). Estimates of the output elasticity of own R&D 

stock range from 0.035 to 0.066; estimated elasticity of external intra-industry R&D stock 

spillovers range from 0.013 to 0.017; and our estimates of the output elasticity of external inter-

industry R&D stock range from 0.056 to 0.065. Our finding that intra-industry R&D spillover are 

greater than inter-industry R&D spillovers is consistent with the literature and is typically argued 

to reflect that the spillovers from R&D by firms within the same industry are tempered by business 

stealing effects. 

[Table 7] 

Bloom et al., (2013) show that under specific simplifying assumptions,30 the social rate of 

return of R&D can be derived from the productivity coefficients, via the following formula: 

� (4) ��� = � 
(�# + �% + �)) 

Where Y/R is the ratio of output to R&D Stock. It is well recognised that this ratio J,K is 
-

biggest wild card in converting elasticities into marginal benefits. Following Bloom et al., (2013) 

we use the median ratio of value added over R&D stock for firms in the regression sample.31 Using 

the coefficient estimate for R&D-outputs elasticity in Table 7, and the corresponding ratio of 

median value-added to the firm’s own R&D stock (3.97, Table A4) we arrive at an estimated MSR 

30 The simplifying assumptions include that firms are symmetric with the same size of output and R&D stock, and the 
same technological linkage as well as the absence of strategic complementarity between internal stock of R&D and 
the specific industry mix of external R&D available to each firm. 
31 In the review by Hall, Mairesse and Mohnen (2010, Tables 2a and 2b), this was assumed to lie in the 1 to 14 range. 
Bloom, Schankerman and Van Reenen (2013, pp 1383) use the median value of the ratio of sales to R&D stock, which 
is 2.48. Kim and Lester (2019) have chosen Y/K instead of Y/R. In Goto and Suzuki (1989, Table 4) the assumed 
value added to R&D stock lay in the range of 8 to 100 depending on the 2-digit industry (this implies that the sales to 
R&D stock ratio would be higher). 
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of 0.46.32 Assuming a depreciation rate of 15 percent (consistent with construction of our R&D 

stock measures) this implies the net present value (NPV) of the discounted stream of economic 

benefits arising from a dollar of R&D stock is then given by:33 

��� 0.46 (5)= � 0.15 
= 3.10 

This estimate is reasonably consistent with the extant literature. In the Australian context, 

Wynn et al., (2022) apply the method by Jones and Summers (2020) report a lower bound estimate 

of the economy wide benefits of a dollar of R&D of $3.50. Drawing together our estimate of the 

NPV of additional eligible R&D stock ($3.10) and the additional R&D per dollar of tax revenue 

for every dollar of tax revenue forgone ($1.61) suggests net present of total economic value 

generated by each dollar of revenue forgone by the R&D tax incentive is $4.99. 

6. Conclusion 
Tax incentives have garnered almost universal favour as policy for encouraging private sector 

research and innovation. To identify the causal effect of the R&DTI, we employ regression 

discontinuity design at the $20 million turnover threshold that determines firms’ eligibility for the 

higher refundable offset value. We provide three main findings regarding the effectiveness of R&D 

tax incentives. First, our analysis reveals that for every dollar of tax revenue forgone, there is an 

additionality effect of $1.61 in additional R&D expenditure. In other words, these incentives yield 

32 We consider estimates reported in column 3 a representative midpoint. Corresponding estimates using alternative 
estimates of output elasticities can be calculated similarly. Using the median output elasticities we have: 
��� = 3.97 × (0.042 + 0.015 + 0.060) = 0.46. 

2 4 4('01)33 lim ∑,23! � <'
'
0
(
1
/= = 

'(!"# = � is depreciation and � is the discount rate, assumed to be zero. The 
,→. !$% 

10/ 

appropriate discount rate for society wide benefits is typically considered the real risk-free rate benchmark (such as 
government bonds). 
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almost twice the amount in R&D activity compared to the fiscal resources foregone. Second, when 

calculating the marginal social rate of return, we found that each dollar invested in R&D generates 

spillover effects of $0.46 for the broader economy annually over the entire lifespan of the 

technological asset resulting from the R&D activity. This underscores the positive externalities 

and long-term economic benefits associated with R&D investments. Lastly, our assessment of the 

net present value (NPV) of economy-wide benefits stemming from eligible R&D expenditures 

indicates a total NPV of $4.99 for each $1 of tax revenue foregone. This figure represents the 

cumulative economic value generated by each dollar of revenue forgone due to the R&D tax 

incentive. 

A few caveats remain to be acknowledged. First, as in the case of all such evaluations, it is 

not possible to categorically rule out possible relabelling or input price inflation (i.e., paying more 

for the same inputs).34 Nonetheless, our productivity estimates confirm that in aggregate eligible 

expenditure augments the productivity on average of both the recipient firm and others in the same 

state. Finally, whereas RD design is a powerful analytical technique for identifying causal effects 

for firms proximate to the policy cut-off, it has well-known untestable limitations in external 

validity. To this end, our analysis focuses on a heavily populated margin of medium sized 

enterprises (A$20m turnover) often targeted for innovation policy. 

34 See Goolsbee (1998) and Thomson and Jensen (2013) for evidence on R&D subsidies and input price inflation. 
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Figure 1: Scatterplot of Log R&D on turnover 

Notes: Figure 1 depicts the relationship between turnover and R&D (both in logs) for the primary regression sample. 
Each observation represents the average R&D spend for groups of firms within a turnover bin with a fixed width of 
0.04 log points. Each bin represents on average 172 firms. The fitted lines illustrate the predictions from locally 
weighted scatterplot smoothing (LOWESS) regression on either side of the A$20 million discontinuity. 
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Figure 2: RD design Estimation for True and Artificial Cut-Offs 

Notes: Each of these results is based on regression discontinuity estimates by local polynomial robust bias-
corrected inference methods (Calonico et al., 2014). The bars represent the 90% confidence intervals. 
Bandwidth is selected using a data-driven technique to select the optimal bandwidth separately across each 
side of the cut-off (Calonico et al., 2014). Following Cattaneo et al., (2020), we use only the treated 
observations when artificial cut-offs are below the true cut-off of $20 million as well as only the control 
observations for artificial cut-offs are above. 
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Table 1: Overview of Key Recent Reforms 

Year Policy Event 

2011‑12 • R&D Tax Incentive (R&DTI) replaces the R&D Tax Concession (RDTC). 
• Available to companies that are resident in Australia for tax purposes, and 

foreign companies in certain circumstances. 
• Refundable 45 percent tax offset available to companies with turnover of 

less than A$20 million, providing a benefit of 15 to 45 cents in the dollar for 
these companies. 

• Non‑refundable 40 percent tax offset available to other companies, resulting 
in a benefit of 10 cents in the dollar for these companies. 

2015‑16 • A$100 million R&D expenditure threshold introduced. Companies 
expending more than A$100 million on R&D can receive a tax offset at the 
corporate tax rate for the R&D expenditure in excess of A$100 million. 

2016‑17 • R&DTI rates lowered to 43.5 percent and 38.5 percent for small and large 
firms, respectively. 

Source: Australian Taxation Office (ATO various years), Department of Industry, Innovation and Science. 
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Table 2: Baseline Regression Results 
(1) (2) (3) (4) (5) (6) (7) 

Turnover under A$20 million (=1) 
Baseline 
0.257*** 
(0.090) 

Quadratic 
0.252** 
(0.122) 

Cubic 
0.270* 
(0.157) 

Doughnut 
0.252** 
(0.102) 

Robust 
0.255*** 
(0.099) 

Single 
Crossers 
0.208** 
(0.100) 

Multi Crossers 
0.421** 
(0.209) 

Number of observations (total) 
Number of observations (treatment) 
Number of observations (control) 
R-squared 
Bandwidth (Lower) 
Bandwidth (Upper) 
Local Polynomial Density (p-value) 

9,661 
8,341 
1,320 
0.0200 
1.480 
0.780 
0.4654 

9,661 
8,341 
1320 

0.0202 
1.480 
0.780 
0.4654 

9,661 
8,341 
1,320 
0.0202 
1.480 
0.780 
0.4654 

9,460 
8,247 
1,213 
0.0204 
1.480 
0.780 
0.5445 

9,610 
8,276 
1,334 
n.a. 

1.473 
0.788 
0.4617 

9,216 
8,035 
1,181 
0.0207 
1.480 
0.780 
0.2965 

445 
306 
139 

0.0168 
1.480 
0.780 
0.1763 

Notes: Columns (1) to (4) and (6) to (7) are based on regression discontinuity estimates using OLS from data spanning between 2012-
13 and 2019-20. In column (5), we perform the local polynomial robust bias-corrected inference method to estimate the regression 
discontinuity estimate (Calonico et al., 2014). Bandwidth (Lower/Upper) is selected by a data-driven technique to select the optimal 
bandwidth (Calonico et al., 2014). Local polynomial density (p-value) by Cattaneo et al., (2020) provides a check on the continuity of 
the running variable. OLS regressions also control for a linear term of the running variable (Turnover), an interaction between Turnover 
and Treatment status (ie. Turnover under A$20 million), year fixed effects. Estimates in columns (2) and (3) include the quadratic for 
the running variable and interaction term while column (3) adds a further cubic term for the running variable and interaction term. In 
column (4), we apply the doughnut method of Almond and Doyle (2011) whereby observations within 5% of threshold are removed 
from the estimating sample. In column (6), we re-run the baseline regression excluding firms having crossed the cutoff more than once. 
The sample used in column (7) includes only those firms that have crossed the cutoff more than once. 
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Table 3: Bandwidth sensitivity 

Upper Bandwidth (Control 
Group) 
0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 1.95 2.1 2.25 

Lower 
Bandwidth 0.3 0.371** 0.309** 0.302** 0.276** 0.239* 0.211* 0.156 0.131 0.096 0.059 0.050 0.046 0.052 0.074 

(Treatment 
Group) 0.45 0.312** 0.249** 0.243** 0.216* 0.180* 0.152 0.097 0.072 0.036 0.000 -0.010 -0.014 -0.007 0.014 

0.6 0.282** 0.220* 0.213** 0.187* 0.150 0.122 0.067 0.042 0.007 -0.030 -0.039 -0.043 -0.037 -0.015 

0.75 0.316*** 0.253** 0.247** 0.220** 0.184* 0.156* 0.101 0.076 0.040 0.004 -0.006 -0.010 -0.003 0.018 

0.9 0.326*** 0.263** 0.257** 0.231** 0.194** 0.166* 0.111 0.086 0.051 0.014 0.004 0.001 0.007 0.029 

1.05 0.314*** 0.252** 0.245** 0.219** 0.182** 0.154* 0.099 0.074 0.039 0.002 -0.007 -0.011 -0.005 0.017 

1.2 0.339*** 0.276*** 0.270*** 0.243*** 0.206** 0.179** 0.123 0.098 0.063 0.026 0.017 0.013 0.020 0.041 

1.35 0.348*** 0.285*** 0.279*** 0.253*** 0.216** 0.188** 0.133 0.108 0.073 0.036 0.026 0.023 0.029 0.051 

1.5 0.356*** 0.293*** 0.287*** 0.261*** 0.224** 0.196** 0.141* 0.116 0.081 0.044 0.034 0.031 0.037 0.059 

1.65 0.364*** 0.302*** 0.295*** 0.269*** 0.232*** 0.204** 0.149* 0.124 0.089 0.052 0.043 0.039 0.045 0.067 

1.8 0.384*** 0.322*** 0.316*** 0.289*** 0.252*** 0.224*** 0.169** 0.144* 0.109 0.072 0.063 0.059 0.066 0.087 

1.95 0.394*** 0.332*** 0.326*** 0.299*** 0.262*** 0.234*** 0.179** 0.154** 0.119 0.082 0.073 0.069 0.076 0.097 

2.1 0.388*** 0.326*** 0.319*** 0.293*** 0.256*** 0.228*** 0.173** 0.148* 0.113 0.076 0.067 0.063 0.069 0.091 

2.25 0.408*** 0.346*** 0.339*** 0.313*** 0.276*** 0.248*** 0.193** 0.168** 0.133* 0.096 0.087 0.083 0.090 0.111 
Notes: Each cell provides a set of coefficient estimates based on regression discontinuity estimates using OLS from data spanning between 2012-13 and 2019-20. 
The lower bandwidth used is found in the row, while upper bandwidth is found in the column. All regressions control for a linear term of the running variable 
(Turnover), an interaction between Turnover and Treatment status year fixed effects. Recall that the optimal bandwidth in the preferred estimates is 1.48 in lower 
bandwidth (Treatment Group) and 0.78 in upper bandwidth (Control Group) (column 1 of table 3) 
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Table 4: Extensive Margin 

Dependent Variable 
Estimator 

(1) 
R&D (1/0) 

OLS 

(2) 
log(R&D) 

Nonparametric 

(3) 
R&D (1/0) 

OLS 

(4) 
log(R&D) 

Nonparametric 

Turnover under $20 million 0.020*** 
(0.004) 

0.020*** 
(0.004) 

0.282*** 
(0.040) 

0.229*** 
(0.042) 

Number of observations (treatment) 372194 372194 306212 306212 

Number of observations (control) 19821 19821 21811 21811 
Bandwidth (Lower) 2.501 2.501 1.790 1.790 
Bandwidth (Upper) 0.967 0.967 0.474 0.474 

Notes: Columns (1) and (3) are based on regression discontinuity estimates using OLS from data spanning 
between 2012-13 and 2019-20. In columns (2) and (4), we perform the local polynomial robust bias-corrected 
inference method to estimate the regression discontinuity estimate (Calonico et al., 2014). These sets of 
regressions include all firm-year observations irrespective if they claim any R&D tax incentive. The dependent 
variable is indicated in the column head. Bandwidth (Lower/Upper) is selected by a data-driven technique to 
select the optimal bandwidth (Calonico et al., 2014). OLS regressions also control for a linear term of the 
running variable (Turnover), an interaction between Turnover and Treatment status (ie. Turnover under A$20 
million), year fixed effects and firm fixed effects. 
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Table 5: Alternative outcome variables of R&D outlays 

Turnover under A$20 million (=1) 

Number of observations 
Number of observations (treatment) 
Number of observations (control) 
R-squared 
Bandwidth (Lower) 
Bandwidth (Upper) 
Local Polynomial Density (p-value) 

Filed Patents 
(Over Three Filed Trademarks Filed Design Rights 

Years) (Over Three Years) (Over Three Years) 
-0.035 0.396 0.131 
(0.111) (0.303) (0.094) 

5238 5238 5238 
4528 4528 4528 
710 710 710 

0.0018 0.0125 0.0002 
1.4800 1.4800 1.4800 
0.7800 0.7800 0.7800 
0.5896 0.5896 0.5896 

Notes: Each of these results is based on regression discontinuity estimates using OLS from data spanning 
between 2012-13 and 2019-20. Bandwidth (Lower/Upper) is selected by a data-driven technique to select the 
optimal bandwidth (Calonico et al., 2014). Lower is the sample size of the treatment group, while Upper is that 
of the control group. Local polynomial density (p-value) by Cattaneo et al., (2020) provides a check on the 
continuity of the running variable. All regressions control for a linear term of the running variable (Turnover), 
an interaction between Turnover and Treatment status (ie. Turnover under A$20 million), year fixed effects. 

35 



 

 

   

 
        

     
           

             
              
            

 
 
  

 
    

        
  

         
    

     
       
        
        

     
      
      

        

Table 6: Falsification test with the different outcome variables 

(1) (2) (3) (4) 
Log Wages Log Headcount Log Capex Log Non-

Current Assets 
Turnover under A$20 million (=1) -0.025 -0.017 0.004 -0.099 

(0.056) (0.027) (0.120) (0.113) 

Number of observations 159073 145930 168304 81251 
Number of observations (treatment) 147166 134759 155601 74896 
Number of observations (control) 11907 11171 12703 6355 
R-squared 0.0288 0.1097 0.0130 0.0129 
Bandwidth (Lower) 1.680 1.680 1.680 1.680 
Bandwidth (Upper) 0.500 0.500 0.500 0.500 
Local Polynomial Density (p-value) 0.4948 0.2688 0.8141 0.6831 

Notes: Each of these results is based on regression discontinuity estimates by local linear regressions, using 
data from 2012-13 to 2019-20. The dependent variable is indicated in the column header. Bandwidth 
(Lower/Upper) is selected by a data-driven technique to select the optimal bandwidth (Calonico et al., 2014). 
Local polynomial density (p-value) by Cattaneo et al., (2020) provides a check on the continuity of the running 
variable. OLS estimates also control for a linear term of the running variable (Turnover), an interaction between 
Turnover and Treatment status (ie. Turnover under A$20 million), year fixed effects and firm fixed effects. 
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Table 7 Marginal Product of R&D Stock Estimates 
(1) (2) (3) (4) 

Dependent 
Variable Notes 

Log Real 
Value 

Added 

Pooled TFP 
Estimates using 

ACF in First Step 

Industry Specific TFP 
Estimates using ACF in 

First Step 

Industry Specific TFP 
Estimates using ACF in 

First Step 
Lag Log Real 
Capital (BIT) 0.189*** 

(0.005) 

Log Headcount 0.799*** 

Lag Log Real 

(0.009) 

R&D Stock 0.066*** 0.036*** 0.042*** 0.035*** 

Lag Log Real 
Intra-Industry 

(0.005) (0.004) (0.005) (0.005) 

R&D Stock 0.013** 0.017** 0.015** 0.013* 

Lag Log Real 
Inter-Industry 

(0.007) (0.007) (0.007) (0.007) 

R&D Stock 0.065** 0.056* 0.060** 0.059** 

Log Real 
Industry Average 

(0.030) (0.030) (0.030) (0.030) 

Value-Added 0.068*** 
(0.009) 

Number of 
Observations 54329 54217 54217 54134 

Number of Firms 12859 12832 12832 12824 

R Squared 0.7833 0.0653 0.3721 0.3753 
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Appendix 
Table A1. Variable definition 

Name of variables Data Source Definition 
Value-added A$ millions 

Assets A$ millions 

BAS (Business Activity	
Statement data ) 
BIT (Business Income	 Tax data) 

Value added = Total sales less Cost of sales for tax 
purposes 
Non-current derived assets comprise assets that the 
company holds for at least one year, e.g., cars, land, 
buildings, office equipment, computers, bonds, stocks, 
notes, patents, trademarks, and goodwill. 

Employment headcount PAYG Number of persons working for this business during 
last pay period 

Own R&D A$ millions R&D Tax Incentive Program 
R&DTI of the Department of 

R&D expenditure values from the program data 

Industry Science, Energy and 
Resources DISER 

Own R&D stock A$ millions R&D Tax Incentive Program 
R&DTI of the Department of 
Industry Science, Energy and 

Standard perpetually inventory formulae: �.,!"#$ = 
(1 − �)�.,!"#, + �.,!"#$, where � is R&D spending 

Resources DISER 
External R&D stock R&D Tax Incentive Program R&D stocks of all other firms but the said firm 
A$ millions R&DTI of the Department of weighted by the proportion of firm is industry inputs 

Industry Science, Energy and are supplied by firm js industry output. Various 
Resources DISER weights used. 
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Table A2: Summary Statistics, Data used for Productivity Estimates 
Variable Definition Mean SD 

Log Real Value-Added Sales less cost of goods sold 14.74 2.02 
(BIT) 

Log Real Capital (BIT) Total Assets less Current Assets 14.31 2.59 

Log Headcount Number of persons working for this business during last 
pay period 

3.60 1.68 

Log Real Cost of Sales Cost of direct inputs to production less change in inventory 14.69 2.45 
(BIT) 

Notes: prior to estimating production functions, we removed firms which reported key operating ratios outside 
99th percentile for their industry. Ratios were capital-labour,  sales per employee and sales per capital. 
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Table A3. First Stage Production Function Estimates 

OLS ACF 
Div k l k l Se N N firms 
(1) 0.311 (0.019) 0.683 (0.026) 0.296 (0.033) 0.736 (0.059) 1785 377 
(3) 0.229 (0.004) 0.784 (0.006) 0.187 (0.010) 0.876 (0.021) 23834 4092 
(4) 0.386 (0.015) 0.649 (0.024) 0.34 (0.113) 0.756 (0.188) 664 149 
(5) 0.254 (0.009) 0.719 (0.012) 0.238 (0.022) 0.772 (0.038) 4122 919 
(6) 0.241 (0.006) 0.791 (0.009) 0.115 (0.032) 1.092 (0.105) 9488 1885 
(7) 0.084 (0.010) 0.894 (0.013) -0.050 (0.142) 1.236 (0.337) 2786 690 
(8) 0.233 (0.022) 0.741 (0.023) 0.285 (0.059) 0.685 (0.245) 539 116 
(9) 0.319 (0.021) 0.666 (0.025) 0.331 (0.122) 0.639 (0.409) 941 193 
(10) 0.227 (0.012) 0.809 (0.020) 0.344 (0.051) 0.207 (0.269) 1773 449 
(12) 0.209 (0.012) 0.785 (0.017) 0.2 (0.026) 0.801 (0.050) 2788 626 
(13) 0.132 (0.005) 0.894 (0.009) 0.132 (0.035) 0.892 (0.201) 11965 2923 
(16) 0.183 (0.041) 0.793 (0.060) 0.167 (0.579) 0.876 (1.173) 308 83 
(17) 0.117 (0.023) 1.016 (0.030) 0.215 (0.230) 0.870 (0.611) 1051 223 
(18) 0.216 (0.048) 0.752 (0.065) 0.308 (0.145) 0.696 (0.193) 270 64 
(19) 0.058 (0.019) 0.874 (0.027) 0.129 (0.111) 0.809 (0.423) 1594 345 

Pooled 0.215 (0.002) 0.795 (0.004) 0.162 (0.005) 0.912 (0.013) 63908 12905 
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Table A4 Summary Statistics for Regression Estimates of Equation (3) 

Variable Mean SD Median 
Log Real Industry Average Value-Added 15.86 1.2 15.7 
Total Factor Productivity (ACF Pooled) 9.12 1.21 9.2 
Total Factor Productivity (ACF Industry Specific 
Estimates) 9.14 0.98 9.24 
Log R&D Stock 12.97 1.96 13.02 
Log Intra-Industry R&D Stock 18.72 1.82 18.94 
Log Inter-Industry R&D Stock 22.75 0.81 22.93 
VA to R&D Stock Ratio (Y/R) 156.50 8939 3.97 

Notes: Number of firm-year observations is 53860. Variable definitions provided in table A2 
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	More recently, the application of quasi-experimental approaches has made important inroads in identifying the causal effect of R&D tax subsidies. Difference-in-Differences (DID) has been applied to reforms in the UK in 2008 (Guceri and Liu 2019); the Canadian small business tax incentive, targeted at firms with turnover below C$500,000 (Agrawal et al., 2020); reform to the Australian R&D tax code in 2012 (Holt et al., 2021) and shift to a threshold for eligibility small firm tax benefit in in India in 2011 
	Regression discontinuity design (RD design) provides a compelling causal design for entitlement policies that feature specific subsidies for small firms, a common feature of policy design. RD design allows for an unbiased and consistent causal estimate within the neighbourhood of the cut-off so long as participants cannot precisely manipulate their position vis-à-vis the 
	threshold (Lee 2008).Dechezleprêtre et al., (2023) implement a fuzzy RD design based on 
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	changes to the size threshold determining eligibility for more generous support in the United Kingdom. Using both traditional RD design and difference-in-discontinuity, the authors focus on the impact of the R&D tax incentives on patenting behaviour. 
	A principal disadvantage of RD design relates to external validity; estimates are valid proximate to the policy threshold considered. In this regard, the cut-off threshold for the policy studied by Dechezleprêtre et al., (2023) is the margin between medium and large firms, defined as employing 499 employees and either balance sheet under €86 (US$90) million assets or €100 (US$105) million turnover.Although firms above this threshold are responsible for a great share of business expenditure on R&D, there is 
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	More generally, it is well recognized that technology policy impact can be contingent on 
	macroeconomic conditions (Guceri and Albinowski 2021).
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	We apply a sharp RD design to evaluate and measure the additionality achieved by the R&D tax incentive policy in Australia. The R&D tax incentive program in Australia provides a higher rate of benefit to small firms, defined by a turnover below A$20 million (US$13.5 million). The Australian context embodies several features which make it in some ways an ideal context for the implementation of RD design. The policy relies solely on current year business turnover to determine eligibility for the higher rate o
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	Our second key contribution is to measure the economy wide benefits of the R&D tax incentive scheme by estimating the productivity benefits of eligible R&D spending. Empirical estimates of the productivity enhancing effect of R&D tax incentives are surprisingly rare with most evaluations focusing on the amount of additional R&D induced, reporting either the tax price elasticity or ‘value for money’ ratio. We use confidential firm-level data for the population of 
	Australian firms to estimate the productivity effect of investment funded via the R&D tax incentive 
	policy using the approach developed by Bloom et al., (2013). 
	We find that the higher refundable offset induces statistically and economically significant additional R&D investment relative to the lower non-refundable offset. Our results suggest that the higher rate of subsidy provided to firms with a turnover below A$20 million induces investment of an additional A$1.61 of R&D per dollar of tax revenue foregone. We estimate that an increase of A$1 in the stock of R&D generates an additional A$0.46 output. Putting these together, we arrive at a net present value of th
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	An implication of this threshold is that the authors’ main result rests on only 200 patenting firms which claim the subsidy. See Dechezleprêtre et al. (2023), Table A7. 
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	2. Policy Context and Data Sources 
	2. Policy Context and Data Sources 
	Australian tax incentives aimed to foster private R&D were initially introduced in 1985 and have since been adjusted and reformed many times.Our analysis focuses on the policy introduced in 2011,called the R&D Tax Incentive Program (R&DTI). The R&DTI is a large-scale government initiative; in the 2019-20 financial year, the program registered A$12.7 billion in R&D expenditures from 14,040 businesses (Industry Innovation and Science Australia, 2021). In the same year, the impact of the scheme on the governme
	8 
	9 

	The R&DTI program comprises a 45 percent offset for small companies (defined as firms 
	with an aggregate current year turnover under A$20 million) and a 40 percent offset for large companies (aggregate turnover exceeding A$20 million). The 45 percent R&D tax offset is refundable, which means that companies with eligible expenditure and no tax liabilities can receive a reimbursement corresponding to any unused offset amount. The 40 percent R&D tax offset is 
	non-refundable, however any residual balance can be carried forward against future tax liability.
	10 

	[Table 1] 
	[Table 1] 
	Data 
	Our data come from the Australian Bureau of Statistics (2021), Business Longitudinal Analysis Data Environment (BLADE). The data modules within BLADE contain integrated financial, innovation and business characteristics for more than 2 million active businesses in Financial information comes from tax returns lodged with the Australian Taxation Office via quarterly Business Activity Statements and annual Business Income Tax statements. Financial data is provided to the ABS at the Australian Business Number l
	Australia.
	11 
	-

	The value of non-refundable offsets therefore depends on the firm’s idiosyncratic discount rate and the number of years before the firm generates a taxable profit. 
	10 

	This statistic is based on the number of ABNs reporting financial information to the Australian Tax Office (ATO) during the period of study. 
	11 

	outcomes -patents, trademarks and design rights are drawn from IP We include 
	Australia.
	12 

	businesses whose aggregate turnovers fall within a neighbourhood (described below) around the 
	refundable offset eligibility cut-off of A$20 million.
	13 

	For complex (multi-subsidiary) businesses, eligibility for the small firm incentive rate is based on aggregate turnover. Ownership relationships are not generally coded in administrative tax databases. We use two available approaches to identify group membership. First, the Australian Bureau of Statistics maintains a population of ‘profiled’ businesses, recording their legal structure and provide unique Enterprise Group identifiers. Unfortunately, not all ownership relationships are captured by the profiled
	14 
	ownership to report consolidated sales for Goods and Services Tax (GST Group).
	15 

	Our main focus is firms with non-zero R&D expenditures in any of the fiscal years between 2012-13 and 2019-20. Foreign controlled firmswere removed from the sample, because it is not possible to verify the aggregate turnover of foreign owned firms, as business activity outside Australia is not recorded by the Australian Taxation Office. Since the data come from company 
	16 

	IP Australia Intellectual Property Longitudinal Research Data (IPLORD) 
	12 

	Aggregate turnover was based on turnover supplied by the firms within their reported BAS which are filed quarterly with the ATO. 
	13 

	ABS the population of profiled firms is determined by ABS based on principles that: (a) they operate through multiple legal entities (b) over $250m in turnover or $25m wages annually (as a group of entities) and (b) not be able to accurately represent themselves as individual ABN units for statistical purposes (ABS pers comm.) 
	14 

	Firms are incentivized to report as a GST Group as it allows sales of goods and services between GST group members to not be subject to GST. These firms must have at least 90 per cent common ownership. We exploit the ABS procedure which apportions group financials equally to identify GST group members. 
	15 

	Operationalized as firms with 10 percent or more foreign shareholding. 
	16 

	tax returns, they are subject to the usual legal accounting standards. Nonetheless, data were cross 
	verified between available information within each company tax return. For example, observations were dropped if the value of offset claimed did not match the total reported R&D We also removed firms which claimed the lower (large firm) tax offset rate but reported aggregate turnover below $20 million which is understood to reflect incomplete aggregation of financials for complex After cleaning, our primary regression is based on the 3,736 unique firms which claimed the incentive over the period and 9,661 f
	expenditure.
	17 
	company groups.
	18 



	3. Empirical Strategy 
	3. Empirical Strategy 
	The R&DTI has a well-defined treatment discontinuity for firms at an aggregate turnover of $20 million. We use the following equation as our baseline to estimate the treatment effects of being eligible for the refundable R&D tax offset rate: 
	𝐿𝑜𝑔 𝑅&𝐷= 𝛼 + 𝜏[1|𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 < $20𝑚𝑖𝑙𝑙𝑖𝑜𝑛] + 𝑓(𝐿𝑜𝑔 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟) + 𝜀(1) 
	 
	 

	where 𝐿𝑜𝑔 𝑅&𝐷is firm 𝑖’s Log R&D spending, [1|𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 < $20𝑚𝑖𝑙𝑙𝑖𝑜𝑛] is an indicator if a firm’s turnover is under $20 million and thus eligible for the refundable higher R&D tax offset rate, and 𝑓(⋅) a polynomial which is a function of the running variable, Log Turnover. We estimate this using OLS and as our sample pools observations over the period between 2012-13 and 201920, we cluster the standard errors at firm-level. The optimal asymmetric bandwidth for each model 
	 
	-

	This affected 8 percent of potential firms. Based on advice from Department of Industry, Science and Resources and the ATO we understand this may reflect a revision to part of the tax return. 
	17 

	Errors in aggregation can occur where firms have not been included in ABS profiled population and choose not to report via GST groups. This can also occur due to timing inconsistencies between corporate income tax reporting and merger and acquisition activity. We drop all observations for any firm that reports an inconsistency in any year, not solely the affected year, this affects 10 percent of our potential population of firms. The converse situation, errors whereby firms with observable turnover above $2
	18 

	was selected using methods developed by Imbens and Kalyanaraman (2012) and Calonico et al., 
	(2014). 
	Causal inference in regression discontinuity design requires that firms are not able to manipulate their treatment status (Lee 2008). The Australian policy change that we focus on is based only on the turnover criteria which renders little room for manipulation of the eligibility for generous tax benefits. Additionally, we undertake non-parametric discontinuity in density test procedure described by Cattaneo et al., (2020). Results of these, presented in regression Table 2, suggest no significant discontinu
	Firms within the refundable offset group spend A$821 thousand on average on R&D. On average, firms above the turnover threshold which are eligible for the offset rate spend more on R&D; an average of $1,264 thousand per firm. The positive association between turnover and R&D expenditure is consistent with well-known patterns and does not violate the assumption of RD design. 

	4. Results 
	4. Results 
	We first consider visual inspection of the expected discontinuity at A$20 million turnover threshold. Figure 1 depicts the relationship between turnover and R&D (both in logs) for the primary regression sample. It is not possible to graph individual firms due to confidentiality restrictions on company tax return data. Each observation on Figure 1 therefore represents the average R&D spend for groups of firms within turnover bins with a fixed width of 0.04 log points. Each bin represents on average 172 firms
	weighted scatterplot smoothing (LOWESS)regression on either side of the A$20 million 
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	discontinuity. The LOWESS regression lines reveal a steady positive relationship between turnover and R&D as turnover increases toward the threshold followed by a sharp decrease in average R&D followed by a return to a positive relationship, albeit at a steeper gradient. The provides a priori evidence of a discontinuity at the A$20 million threshold for eligibility for the more generous subsidy rate which we formally interrogate using econometric RD design. 
	[Figure 1] 
	[Figure 1] 
	Table 2 reports baseline RD design estimates. Recall that firms with a turnover under A$20 million are eligible for the higher value of refundable R&D tax offset. All regressions control for a linear term of the running variable (Turnover), an interaction between Turnover and treatment status (i.e., Turnover under A$20 million) and year fixed effects. We also implemented the local polynomial method suggested by Cattaneo et al., (2020) which implements a data-driven technique to select the optimal bandwidth.
	Column 1 of Table 2 reveals an estimated coefficient on this discontinuity is 0.257. This translates into a 29% increase in R&D expenditure for those firms below the cutoff as compared 
	A local linear regression using a tri-cube weighting function (Cleveland 1979) 
	19 

	to those above the To further examine the robustness to functional form assumption we 
	cutoff.
	20 

	augment the model with higher order terms in the running variable and their interaction with firm treatment status (Cook 2008). Results are presented in columns 2 include the quadratic term and in column 3 we also add the cubic term. 
	Almond and Doyle (2011) propose applying a ‘doughnut method’, whereby observations within 5% of threshold are removed from the estimating sample to accommodate any possible manipulation around the cutoff point. Results using this approach are reported in column (4). In column (5), we perform the nonparametric robust bias-corrected inference method (Calonico et al., 2014). As shown, the estimated coefficient on the assignment variable remains largely unchanged. 
	We also investigate the extent to which our results may be driven by the behaviour of firms whose turnover fluctuates such that they qualify for the higher rate of incentive in some years but do not qualify in others. To do this, we re-run the baseline regression excluding firms having crossed the cutoff more than once. Results are presented in column (6), and show the estimated treatment effect virtually remains almost the same as the baseline results in column (1). In column 
	(7) we re-estimate the RD design based on the sample of firms which did cross the eligibility threshold more than once. We note that the estimated coefficient is slightly larger, perhaps reflecting some opportunistic behaviour among those firms, although not statistically significantly different than the coefficient estimates reported in column (6). 
	[Table 2] 
	Percentage change: 𝑒− 1 
	. 


	Bandwidth Selection 
	Bandwidth Selection 
	To ensure that our results are not excessively sensitive to the choice of bandwidth, we conducted a grid search of the bandwidth window, varying the upper and lower bandwidth in increments of 
	0.15 log points (from 0.3 to 2.25) in Table 3. Results show that the estimated coefficient is reasonably stable across relevant windows of bandwidth (Table 3). In particular, the results are robust with symmetric bandwidth, as was common in older RD design applications. 

	[Table 3] 
	[Table 3] 
	Extensive Margin 
	The results presented above document a positive impact of the more generous tax offset on R&D expenditure. We also consider whether this policy impact induces increases in the extensive margin – that is, whether eligibility to the more generous rebate incentivizes firms to become R&D active. Column 1 of Table 4 shows the results of a linear probability model with an indicator variable which takes the value to 1 if a firm report any R&D expenditures and zero otherwise. The estimating sample includes all firm
	In column (3), we combine the sample of intensive and extensive margins by setting the dependent variable as the log R&D for the full sample of firms within BLADE, rather than just the 
	firm-years for firms with positive R&D Using the full sample, the coefficient 
	expenditures.
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	estimates remain quite stable when compared to the results of Table 2. 

	[Table 4] 
	[Table 4] 
	Impact on Measures of Research Output 
	Table 5 reports estimates for analogous RD Design models using alternative outcome measures which might be anticipated to be influenced by R&D tax incentives, including patents, trademarks and design rights. To account for the lead time required to convert R&D expenditures to IP registrations we consider aggregate registrations of each IP application over three years periods. Estimations reveal no statistically significant coefficient estimates on the treatment assignment variable. We speculate that the lac
	22 


	[Table 5] 
	[Table 5] 
	Falsification Tests 
	We undertake two common falsification tests. The first is to estimate analogous models of alternative outcome variables which are not expected to exhibit discontinuity at the cutoff, namely 
	To account for firms reporting zero, R&D, we do a standard adjustment of adding $1 to R&D prior to the log transformation. 
	21 

	The share of R&D active firms within the bandwidth which register any patents, trademarks and design rights over a three year period are 0.08, 0.26 and 0.04, respectively. 
	22 

	wages, employment, and tangible investment. Results are presented in Table 6. In all cases, we do 
	not find any statistically significant treatment effect of being below the cutoff. This result also supports the assumption of RD design that firm characteristics are similar at the cut-off. 

	[Table 6] 
	[Table 6] 
	Our second falsification test is to test for structural breaks in R&D at alternative turnover thresholds (where no policy discontinuity applies). We implement this approach using the local polynomial optimal bandwidth estimator discussed by Calonico et al., (2014). To avoid potential contamination with the actual treatment effect we use only the treated observations when artificial cut-offs are below the true cut-off of A$20 million and only control observations for artificial cutoffs above (Cattaneo et al.
	-
	at the treatment threshold.
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	[Figure 2] 
	[Figure 2] 
	Value for Money Ratio 
	To interpret the magnitude of the causal estimate for R&D tax incentives, we calculate the ‘value for money’ ratio, which is sometimes referred to as the additionality ratio defined as the amount of additional R&D for every dollar of tax revenue forgone. We estimate the additionality of the 
	Estimating the same models using OLS yields consistent results. 
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	refundable 45 percent offset as compared to the non-refundable 40 percent offset. To make the 
	calculation tractable, we assume that the amount of induced R&D is entirely attributable to the higher rate of offset, not to earlier access to benefits for firms with exhausted tax liabilities under 
	the rebate scheme.
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	The main estimate in Section 4 suggests a treatment effect of 29 percent greater claimable R&D expenses. As we estimate the treatment effect in dollars of R&D (rather than, for example, a count of additional patents), we can directly obtain the additionality ratio (value for money ratio) as:
	25 

	∆𝑅&𝐷 ∆𝑅&𝐷 0.29 
	(2)
	∆𝑇𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝐹𝑜𝑟𝑔𝑜𝑛𝑒 
	= 
	∆𝑂𝑓𝑓𝑠𝑒𝑡 × 𝑅&𝐷 + ∆𝑅&𝐷 × 𝑂𝑓𝑓𝑠𝑒𝑡 
	= 
	$0.05 + 0.29 × $0.45 
	= 1.61 

	Note that the first term in the denominator reflects the cost of subsidizing inframarginal R&D (R&D already being undertaken at the lower subsidy level sub subject to the higher rate of subsidy) and the second term reflects the cost to revenue of the marginal (induced) R&D. If the estimated effect is attributed to the higher offset rate, it amounts to the additionality (value for money ratio) of 1.61 for R&D per dollar of tax revenue foregone. Based on the difference in tax price between 
	Firms with no tax liabilities in a claiming year are able to carry forward unused tax credits to future years. This means the effective value may be discounted depending on the firm’s discount rates as well as the number of years before the firm earns a taxable profit. 
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	Second, we have not explicitly modelled the difference in refundability between the large and small firm policy. For those large firms with exhausted tax liabilities, non-refundable offsets can be carried forward to reduce future tax liabilities, using population average delays and representative discount rates suggests a small difference in value; though we acknowledge this may be larger for firms with high idiosyncratic discount rates. 
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	the small and large firm scheme (40 vs 45 percent credit) the implied tax price elasticity of R&D 
	is equal to 3.5.
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	This estimate is reasonably similar to the previous literature. Though we note it is somewhat smaller than estimated by Dechezleprêtre et al., (2023) who find a tax price elasticity of 4.1 and a value for money ratio of 2.34. This difference may reflect that smaller firms analyzed here are intrinsically less responsive to R&D tax incentives. Alternatively, it may reflect heightened sensitivity to liquidity due to the global financial crisis concurrent with the latter study. 


	5. Economic Impact 
	5. Economic Impact 
	The first order impact of R&D tax incentives is to induce firms to invest more in R&D. Productivity spillovers arising from such R&D are the most common justification for public support of private R&D (Bloom et al., 2019). Measuring the total economic benefit of R&D tax subsidies requires an estimate of productivity gains from induced R&D (the private rate of return) and their spillover effects on the adjacent firms (the external rate of return). Yet, empirical work which include estimates of the productivi
	the impact of implicit subsidies on R&D spending.
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	The tax price elasticity is calculated ratio 0.29 to the proportional difference in the user cost of capital, where the user cost or R&D capital is given by (𝑟 + 𝛿) where A is the value of credits and deductions on R&D & 𝜏 is the 
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	corporate income tax rate. 
	For grant-based subsidies, Crespi et al., (2020) estimate the direct and spillover effects of two separate R&D grant schemes designed to promote firm-level research and development (R&D) investment in Chile on firm productivity of other non-participating firms. 
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	To estimate the overall economic impact of the R&D tax incentive in Australia we 
	complement our estimate of value for money ratio with bespoke estimates of the economic returns to eligible expenditure (all spending claimed against the policy) using data covering the population claiming firms over the period 2002-2019. To do this, we first estimate the effect of own and external R&D stock on firm productivity, then use the estimated marginal product coefficients to calculate the implied economy wide marginal social return (MSR) – i.e., the increase in aggregate output generated by a marg
	To estimate productivity effect of the stock of eligible R&D investment (henceforth referred to as R&D stock) we follow the common two-stage procedure whereby we first estimate firm-level total factor productivity (TFP) and then estimate the effect of own and external R&D stock on this. To derive the total factor productivity (TFP) for each firm in each year we use the control function approach of Ackerberg, Caves and Frazer (2015) (ACF). The ACF approach accommodates simultaneity of inputs and endogenous e
	production functions for firms in each of the 15 industry divisions.
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	We omit mining (B), financial services (K), public administration (N) and administrative support (O) based on relevance or the fact that production functions estimated for resulted in unreasonable input coefficients, e.g., a complexity in mining productivity is ore quality & financial services face complexities with separating tangible from financial capital. 
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	In a second step we model the effect of own and external R&D stock on firm-level TFP. 
	Following Bakhtiari and Breunig, (2018) we focus on R&D spillovers within the same state. The estimating equation is given at equation (3). 
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	where 𝑇𝐹𝑃𝑟and 𝑠reflects firms own and external stock of R&D for firm 𝑖 in year 𝑡. External R&D stock (𝑆) is further decomposed to allow for separate estimate of intra-and interindustry spillovers. Specifically, we include the unweighted sum of R&D stock of firms in the same 2 digit industry (intra-industry) in the same State 𝑠
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	stock with other industries in the same State 𝑠The parameters of interest for our analysis are 𝜃(own R&D elasticity of output) and 𝜃(𝑖ntra-industry spillovers) and 𝜃, (inter-industry spillovers). We include state, industry and year fixed effects to control for specific technological opportunity, inter alia. Following Bloom et al (2013) we also include four-digit industry time-varying controls, defined as the annual average turnover in each industry, to capture common transitory shocks that might affect
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	Estimates are reported in Table 7. Column (1) present a simple baseline OLS log-linear Cobb Douglas production function incorporating the R&D stock measures where the dependent variable is value added. Column (2) models TFP, via a first stage using ACF for the pooled sample. Column (3) models TFP which has been estimated via 15 industry-specific production functions estimated using ACF. Finally, Column (4) augments the model by including industry average real 
	We use the unweighted measure of a pool of external R&D stock since symmetric of inter-industry impact is an assumption for approximating rate of return from output elasticities (see Bloom et al., 2013). 
	29 

	value added, suggested by Bloom et al. (2013). Estimates of the output elasticity of own R&D 
	stock range from 0.035 to 0.066; estimated elasticity of external intra-industry R&D stock spillovers range from 0.013 to 0.017; and our estimates of the output elasticity of external interindustry R&D stock range from 0.056 to 0.065. Our finding that intra-industry R&D spillover are greater than inter-industry R&D spillovers is consistent with the literature and is typically argued to reflect that the spillovers from R&D by firms within the same industry are tempered by business stealing effects. 
	-

	[Table 7] 
	Bloom et al., (2013) show that under specific simplifying assumptions,the social rate of return of R&D can be derived from the productivity coefficients, via the following formula: 
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	𝑌 (4) 
	𝑀𝑆𝑅 = (𝜃+ 𝜃+ 𝜃) 
	𝑅 
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	Where Y/R is the ratio of output to R&D Stock. It is well recognised that this ratio  is 
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	biggest wild card in converting elasticities into marginal benefits. Following Bloom et al., (2013) Using the coefficient estimate for R&D-outputs elasticity in Table 7, and the corresponding ratio of median value-added to the firm’s own R&D stock (3.97, Table A4) we arrive at an estimated MSR 
	we use the median ratio of value added over R&D stock for firms in the regression sample.
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	The simplifying assumptions include that firms are symmetric with the same size of output and R&D stock, and the same technological linkage as well as the absence of strategic complementarity between internal stock of R&D and the specific industry mix of external R&D available to each firm. 
	30 

	In the review by Hall, Mairesse and Mohnen (2010, Tables 2a and 2b), this was assumed to lie in the 1 to 14 range. Bloom, Schankerman and Van Reenen (2013, pp 1383) use the median value of the ratio of sales to R&D stock, which is 2.48. Kim and Lester (2019) have chosen Y/K instead of Y/R. In Goto and Suzuki (1989, Table 4) the assumed value added to R&D stock lay in the range of 8 to 100 depending on the 2-digit industry (this implies that the sales to R&D stock ratio would be higher). 
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	of 0.46.Assuming a depreciation rate of 15 percent (consistent with construction of our R&D 
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	stock measures) this implies the net present value (NPV) of the discounted stream of economic benefits arising from a dollar of R&D stock is then given by:
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	𝑀𝑆𝑅 0.46 (5)
	= 
	𝜌 
	0.15 
	= 3.10 

	This estimate is reasonably consistent with the extant literature. In the Australian context, Wynn et al., (2022) apply the method by Jones and Summers (2020) report a lower bound estimate of the economy wide benefits of a dollar of R&D of $3.50. Drawing together our estimate of the NPV of additional eligible R&D stock ($3.10) and the additional R&D per dollar of tax revenue for every dollar of tax revenue forgone ($1.61) suggests net present of total economic value generated by each dollar of revenue forgo

	6. Conclusion 
	6. Conclusion 
	Tax incentives have garnered almost universal favour as policy for encouraging private sector research and innovation. To identify the causal effect of the R&DTI, we employ regression discontinuity design at the $20 million turnover threshold that determines firms’ eligibility for the higher refundable offset value. We provide three main findings regarding the effectiveness of R&D tax incentives. First, our analysis reveals that for every dollar of tax revenue forgone, there is an additionality effect of $1
	We consider estimates reported in column 3 a representative midpoint. Corresponding estimates using alternative estimates of output elasticities can be calculated similarly. Using the median output elasticities we have: 
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	𝑀𝑆𝑅 = 3.97 × (0.042 + 0.015 + 0.060) = 0.46. 
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	lim ∑𝑟  =  = 𝜌 is depreciation and 𝜋 is the discount rate, assumed to be zero. The 
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	appropriate discount rate for society wide benefits is typically considered the real risk-free rate benchmark (such as government bonds). 
	almost twice the amount in R&D activity compared to the fiscal resources foregone. Second, when calculating the marginal social rate of return, we found that each dollar invested in R&D generates spillover effects of $0.46 for the broader economy annually over the entire lifespan of the technological asset resulting from the R&D activity. This underscores the positive externalities and long-term economic benefits associated with R&D investments. Lastly, our assessment of the net present value (NPV) of econo
	A few caveats remain to be acknowledged. First, as in the case of all such evaluations, it is not possible to categorically rule out possible relabelling or input price inflation (i.e., paying more for the same Nonetheless, our productivity estimates confirm that in aggregate eligible expenditure augments the productivity on average of both the recipient firm and others in the same state. Finally, whereas RD design is a powerful analytical technique for identifying causal effects for firms proximate to the 
	inputs).
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	See Goolsbee (1998) and Thomson and Jensen (2013) for evidence on R&D subsidies and input price inflation. 
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	Figure 1: Scatterplot of Log R&D on turnover 
	Figure
	Notes: Figure 1 depicts the relationship between turnover and R&D (both in logs) for the primary regression sample. Each observation represents the average R&D spend for groups of firms within a turnover bin with a fixed width of 
	0.04 log points. Each bin represents on average 172 firms. The fitted lines illustrate the predictions from locally weighted scatterplot smoothing (LOWESS) regression on either side of the A$20 million discontinuity. 
	Figure 2: RD design Estimation for True and Artificial Cut-Offs 
	Figure
	Notes: Each of these results is based on regression discontinuity estimates by local polynomial robust bias-corrected inference methods (Calonico et al., 2014). The bars represent the 90% confidence intervals. Bandwidth is selected using a data-driven technique to select the optimal bandwidth separately across each side of the cut-off (Calonico et al., 2014). Following Cattaneo et al., (2020), we use only the treated observations when artificial cut-offs are below the true cut-off of $20 million as well as 
	Table 1: Overview of Key Recent Reforms 
	Year Policy Event 
	Year Policy Event 
	2011‑12 • R&D Tax Incentive (R&DTI) replaces the R&D Tax Concession (RDTC). 
	• 
	• 
	• 
	Available to companies that are resident in Australia for tax purposes, and foreign companies in certain circumstances. 

	• 
	• 
	Refundable 45 percent tax offset available to companies with turnover of less than A$20 million, providing a benefit of 15 to 45 cents in the dollar for these companies. 

	• 
	• 
	Non‑refundable 40 percent tax offset available to other companies, resulting in a benefit of 10 cents in the dollar for these companies. 


	2015‑16 • A$100 million R&D expenditure threshold introduced. Companies expending more than A$100 million on R&D can receive a tax offset at the corporate tax rate for the R&D expenditure in excess of A$100 million. 
	2016‑17 • R&DTI rates lowered to 43.5 percent and 38.5 percent for small and large firms, respectively. 
	Source: Australian Taxation Office (ATO various years), Department of Industry, Innovation and Science. 
	Table 2: Baseline Regression Results 
	Table
	TR
	(1) 
	(2) 
	(3) 
	(4) 
	(5) 
	(6) 
	(7) 

	Turnover under A$20 million (=1) 
	Turnover under A$20 million (=1) 
	Baseline 0.257*** (0.090) 
	Quadratic 0.252** (0.122) 
	Cubic 0.270* (0.157) 
	Doughnut 0.252** (0.102) 
	Robust 0.255*** (0.099) 
	Single Crossers 0.208** (0.100) 
	Multi Crossers 0.421** (0.209) 

	Number of observations (total) Number of observations (treatment) Number of observations (control) R-squared Bandwidth (Lower) Bandwidth (Upper) Local Polynomial Density (p-value) 
	Number of observations (total) Number of observations (treatment) Number of observations (control) R-squared Bandwidth (Lower) Bandwidth (Upper) Local Polynomial Density (p-value) 
	9,661 8,341 1,320 0.0200 1.480 0.780 0.4654 
	9,661 8,341 1320 0.0202 1.480 0.780 0.4654 
	9,661 8,341 1,320 0.0202 1.480 0.780 0.4654 
	9,460 8,247 1,213 0.0204 1.480 0.780 0.5445 
	9,610 8,276 1,334 n.a. 1.473 0.788 0.4617 
	9,216 8,035 1,181 0.0207 1.480 0.780 0.2965 
	445 306 139 0.0168 1.480 0.780 0.1763 


	Notes: Columns (1) to (4) and (6) to (7) are based on regression discontinuity estimates using OLS from data spanning between 201213 and 2019-20. In column (5), we perform the local polynomial robust bias-corrected inference method to estimate the regression discontinuity estimate (Calonico et al., 2014). Bandwidth (Lower/Upper) is selected by a data-driven technique to select the optimal bandwidth (Calonico et al., 2014). Local polynomial density (p-value) by Cattaneo et al., (2020) provides a check on the
	-

	Table 3: Bandwidth sensitivity 
	Table
	TR
	Upper Bandwidth (Control Group) 

	TR
	0.3 
	0.45 
	0.6 
	0.75 
	0.9 
	1.05 
	1.2 
	1.35 
	1.5 
	1.65 
	1.8 
	1.95 
	2.1 
	2.25 

	Lower Bandwidth 
	Lower Bandwidth 
	0.3 
	0.371** 0.309** 0.302** 
	0.276** 
	0.239* 
	0.211* 
	0.156 
	0.131 
	0.096 
	0.059 
	0.050 
	0.046 
	0.052 
	0.074 

	(Treatment Group) 
	(Treatment Group) 
	0.45 
	0.312** 0.249** 0.243** 
	0.216* 
	0.180* 
	0.152 
	0.097 
	0.072 
	0.036 
	0.000 
	-0.010 
	-0.014 
	-0.007 
	0.014 

	TR
	0.6 
	0.282** 0.220* 0.213** 
	0.187* 
	0.150 
	0.122 
	0.067 
	0.042 
	0.007 
	-0.030 
	-0.039 
	-0.043 
	-0.037 
	-0.015 

	TR
	0.75 
	0.316*** 0.253** 0.247** 
	0.220** 
	0.184* 
	0.156* 
	0.101 
	0.076 
	0.040 
	0.004 
	-0.006 
	-0.010 
	-0.003 
	0.018 

	TR
	0.9 
	0.326*** 0.263** 0.257** 
	0.231** 
	0.194** 
	0.166* 
	0.111 
	0.086 
	0.051 
	0.014 
	0.004 
	0.001 
	0.007 
	0.029 

	TR
	1.05 
	0.314*** 0.252** 0.245** 
	0.219** 
	0.182** 
	0.154* 
	0.099 
	0.074 
	0.039 
	0.002 
	-0.007 
	-0.011 
	-0.005 
	0.017 

	TR
	1.2 
	0.339*** 0.276*** 0.270*** 
	0.243*** 
	0.206** 
	0.179** 
	0.123 
	0.098 
	0.063 
	0.026 
	0.017 
	0.013 
	0.020 
	0.041 

	TR
	1.35 
	0.348*** 0.285*** 0.279*** 
	0.253*** 
	0.216** 
	0.188** 
	0.133 
	0.108 
	0.073 
	0.036 
	0.026 
	0.023 
	0.029 
	0.051 

	TR
	1.5 
	0.356*** 0.293*** 0.287*** 
	0.261*** 
	0.224** 
	0.196** 
	0.141* 
	0.116 
	0.081 
	0.044 
	0.034 
	0.031 
	0.037 
	0.059 

	TR
	1.65 
	0.364*** 0.302*** 0.295*** 
	0.269*** 
	0.232*** 
	0.204** 
	0.149* 
	0.124 
	0.089 
	0.052 
	0.043 
	0.039 
	0.045 
	0.067 

	TR
	1.8 
	0.384*** 0.322*** 0.316*** 
	0.289*** 
	0.252*** 
	0.224*** 
	0.169** 
	0.144* 
	0.109 
	0.072 
	0.063 
	0.059 
	0.066 
	0.087 

	TR
	1.95 
	0.394*** 0.332*** 0.326*** 
	0.299*** 
	0.262*** 
	0.234*** 
	0.179** 
	0.154** 
	0.119 
	0.082 
	0.073 
	0.069 
	0.076 
	0.097 

	TR
	2.1 
	0.388*** 0.326*** 0.319*** 
	0.293*** 
	0.256*** 
	0.228*** 
	0.173** 
	0.148* 
	0.113 
	0.076 
	0.067 
	0.063 
	0.069 
	0.091 

	TR
	2.25 
	0.408*** 0.346*** 0.339*** 
	0.313*** 
	0.276*** 
	0.248*** 
	0.193** 
	0.168** 
	0.133* 
	0.096 
	0.087 
	0.083 
	0.090 
	0.111 


	Notes: Each cell provides a set of coefficient estimates based on regression discontinuity estimates using OLS from data spanning between 2012-13 and 2019-20. The lower bandwidth used is found in the row, while upper bandwidth is found in the column. All regressions control for a linear term of the running variable (Turnover), an interaction between Turnover and Treatment status year fixed effects. Recall that the optimal bandwidth in the preferred estimates is 1.48 in lower bandwidth (Treatment Group) and 
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	Table 4: Extensive Margin 
	Dependent Variable Estimator 
	Dependent Variable Estimator 
	Dependent Variable Estimator 
	(1) R&D (1/0) OLS 
	(2) log(R&D) Nonparametric 
	(3) R&D (1/0) OLS 
	(4) log(R&D) Nonparametric 

	Turnover under $20 million 
	Turnover under $20 million 
	0.020*** (0.004) 
	0.020*** (0.004) 
	0.282*** (0.040) 
	0.229*** (0.042) 


	Number of observations (treatment) 
	Number of observations (treatment) 
	Number of observations (treatment) 
	372194 
	372194 
	306212 
	306212 

	Number of observations (control) 
	Number of observations (control) 
	19821 
	19821 
	21811 
	21811 

	Bandwidth (Lower) 
	Bandwidth (Lower) 
	2.501 
	2.501 
	1.790 
	1.790 

	Bandwidth (Upper) 
	Bandwidth (Upper) 
	0.967 
	0.967 
	0.474 
	0.474 


	Notes: Columns (1) and (3) are based on regression discontinuity estimates using OLS from data spanning between 2012-13 and 2019-20. In columns (2) and (4), we perform the local polynomial robust bias-corrected inference method to estimate the regression discontinuity estimate (Calonico et al., 2014). These sets of regressions include all firm-year observations irrespective if they claim any R&D tax incentive. The dependent variable is indicated in the column head. Bandwidth (Lower/Upper) is selected by a d
	Table 5: Alternative outcome variables of R&D outlays 
	Turnover under A$20 million (=1) 
	Number of observations Number of observations (treatment) Number of observations (control) R-squared 
	Bandwidth (Lower) Bandwidth (Upper) Local Polynomial Density (p-value) 
	Filed Patents 
	Filed Patents 
	Filed Patents 

	(Over Three 
	(Over Three 
	Filed Trademarks 
	Filed Design Rights 

	Years) 
	Years) 
	(Over Three Years) 
	(Over Three Years) 


	-0.035 
	-0.035 
	-0.035 
	0.396 
	0.131 

	(0.111) 
	(0.111) 
	(0.303) 
	(0.094) 

	5238 
	5238 
	5238 
	5238 

	4528 
	4528 
	4528 
	4528 

	710 
	710 
	710 
	710 

	0.0018 
	0.0018 
	0.0125 
	0.0002 

	1.4800 
	1.4800 
	1.4800 
	1.4800 

	0.7800 
	0.7800 
	0.7800 
	0.7800 

	0.5896 
	0.5896 
	0.5896 
	0.5896 


	Notes: Each of these results is based on regression discontinuity estimates using OLS from data spanning between 2012-13 and 2019-20. Bandwidth (Lower/Upper) is selected by a data-driven technique to select the optimal bandwidth (Calonico et al., 2014). Lower is the sample size of the treatment group, while Upper is that of the control group. Local polynomial density (p-value) by Cattaneo et al., (2020) provides a check on the continuity of the running variable. All regressions control for a linear term of 
	Table 6: Falsification test with the different outcome variables 
	(1) 
	(1) 
	(1) 
	(2) 
	(3) 
	(4) 

	Log Wages 
	Log Wages 
	Log Headcount 
	Log Capex 
	Log Non-Current Assets 


	Turnover under A$20 million (=1) 
	Turnover under A$20 million (=1) 
	Turnover under A$20 million (=1) 
	-0.025 
	-0.017 
	0.004 
	-0.099 

	TR
	(0.056) 
	(0.027) 
	(0.120) 
	(0.113) 

	Number of observations 
	Number of observations 
	159073 
	145930 
	168304 
	81251 

	Number of observations (treatment) 
	Number of observations (treatment) 
	147166 
	134759 
	155601 
	74896 

	Number of observations (control) 
	Number of observations (control) 
	11907 
	11171 
	12703 
	6355 

	R-squared 
	R-squared 
	0.0288 
	0.1097 
	0.0130 
	0.0129 

	Bandwidth (Lower) 
	Bandwidth (Lower) 
	1.680 
	1.680 
	1.680 
	1.680 

	Bandwidth (Upper) 
	Bandwidth (Upper) 
	0.500 
	0.500 
	0.500 
	0.500 

	Local Polynomial Density (p-value) 
	Local Polynomial Density (p-value) 
	0.4948 
	0.2688 
	0.8141 
	0.6831 


	Notes: Each of these results is based on regression discontinuity estimates by local linear regressions, using data from 2012-13 to 2019-20. The dependent variable is indicated in the column header. Bandwidth (Lower/Upper) is selected by a data-driven technique to select the optimal bandwidth (Calonico et al., 2014). Local polynomial density (p-value) by Cattaneo et al., (2020) provides a check on the continuity of the running variable. OLS estimates also control for a linear term of the running variable (T
	Table 7 Marginal Product of R&D Stock Estimates 
	Table
	TR
	(1) 
	(2) 
	(3) 
	(4) 

	Dependent Variable Notes 
	Dependent Variable Notes 
	Log Real Value Added 
	Pooled TFP Estimates using ACF in First Step 
	Industry Specific TFP Estimates using ACF in First Step 
	Industry Specific TFP Estimates using ACF in First Step 

	Lag Log Real 
	Lag Log Real 

	Capital (BIT) 
	Capital (BIT) 
	0.189*** 

	TR
	(0.005) 

	Log Headcount 
	Log Headcount 
	0.799*** 

	Lag Log Real 
	Lag Log Real 
	(0.009) 

	R&D Stock 
	R&D Stock 
	0.066*** 
	0.036*** 
	0.042*** 
	0.035*** 

	Lag Log Real Intra-Industry 
	Lag Log Real Intra-Industry 
	(0.005) 
	(0.004) 
	(0.005) 
	(0.005) 

	R&D Stock 
	R&D Stock 
	0.013** 
	0.017** 
	0.015** 
	0.013* 

	Lag Log Real Inter-Industry 
	Lag Log Real Inter-Industry 
	(0.007) 
	(0.007) 
	(0.007) 
	(0.007) 

	R&D Stock 
	R&D Stock 
	0.065** 
	0.056* 
	0.060** 
	0.059** 

	Log Real Industry Average 
	Log Real Industry Average 
	(0.030) 
	(0.030) 
	(0.030) 
	(0.030) 

	Value-Added 
	Value-Added 
	0.068*** 

	TR
	(0.009) 

	Number of 
	Number of 

	Observations 
	Observations 
	54329 
	54217 
	54217 
	54134 

	Number of Firms 
	Number of Firms 
	12859 
	12832 
	12832 
	12824 

	R Squared 
	R Squared 
	0.7833 
	0.0653 
	0.3721 
	0.3753 





	Appendix 
	Appendix 
	Table A1. Variable definition 
	Table A1. Variable definition 
	Table A1. Variable definition 

	Name of variables 
	Name of variables 
	Data Source 
	Definition 

	Value-added A$ millions Assets A$ millions 
	Value-added A$ millions Assets A$ millions 
	BAS (Business Activity.Statement data ) BIT (Business Income. Tax data) 
	Value added = Total sales less Cost of sales for tax purposes Non-current derived assets comprise assets that the 

	TR
	company holds for at least one year, e.g., cars, land, 

	TR
	buildings, office equipment, computers, bonds, stocks, notes, patents, trademarks, and goodwill. 

	Employment headcount 
	Employment headcount 
	PAYG 
	Number of persons working for this business during 

	TR
	last pay period 

	Own R&D A$ millions 
	Own R&D A$ millions 
	R&D Tax Incentive Program R&DTI of the Department of 
	R&D expenditure values from the program data 

	TR
	Industry Science, Energy and 

	TR
	Resources DISER 

	Own R&D stock A$ millions 
	Own R&D stock A$ millions 
	R&D Tax Incentive Program R&DTI of the Department of Industry Science, Energy and 
	Standard perpetually inventory formulae: 𝑅, = (1 − 𝜌)𝑅, + 𝐷,, where 𝐷 is R&D spending 

	TR
	Resources DISER 

	External R&D stock 
	External R&D stock 
	R&D Tax Incentive Program 
	R&D stocks of all other firms but the said firm 

	A$ millions 
	A$ millions 
	R&DTI of the Department of 
	weighted by the proportion of firm is industry inputs 

	TR
	Industry Science, Energy and 
	are supplied by firm js industry output. Various 

	TR
	Resources DISER 
	weights used. 
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	Table A2: Summary Statistics, Data used for Productivity Estimates 
	Table A2: Summary Statistics, Data used for Productivity Estimates 
	Table A2: Summary Statistics, Data used for Productivity Estimates 

	Variable 
	Variable 
	Definition 
	Mean 
	SD 

	Log Real Value-Added 
	Log Real Value-Added 
	Sales less cost of goods sold 
	14.74 
	2.02 

	(BIT) 
	(BIT) 

	Log Real Capital (BIT) 
	Log Real Capital (BIT) 
	Total Assets less Current Assets 
	14.31 
	2.59 

	Log Headcount 
	Log Headcount 
	Number of persons working for this business during last pay period 
	3.60 
	1.68 

	Log Real Cost of Sales 
	Log Real Cost of Sales 
	Cost of direct inputs to production less change in inventory 
	14.69 
	2.45 

	(BIT) 
	(BIT) 


	Notes: prior to estimating production functions, we removed firms which reported key operating ratios outside 99percentile for their industry. Ratios were capital-labour,  sales per employee and sales per capital. 
	th 

	Table A3. First Stage Production Function Estimates 
	Table A3. First Stage Production Function Estimates 
	Table A3. First Stage Production Function Estimates 

	OLS 
	OLS 
	ACF 

	Div 
	Div 
	k 
	l 
	k 
	l 
	Se 
	N 
	N firms 

	(1) 
	(1) 
	0.311 
	(0.019) 
	0.683 
	(0.026) 
	0.296 
	(0.033) 
	0.736 
	(0.059) 
	1785 
	377 

	(3) 
	(3) 
	0.229 
	(0.004) 
	0.784 
	(0.006) 
	0.187 
	(0.010) 
	0.876 
	(0.021) 
	23834 
	4092 

	(4) 
	(4) 
	0.386 
	(0.015) 
	0.649 
	(0.024) 
	0.34 
	(0.113) 
	0.756 
	(0.188) 
	664 
	149 

	(5) 
	(5) 
	0.254 
	(0.009) 
	0.719 
	(0.012) 
	0.238 
	(0.022) 
	0.772 
	(0.038) 
	4122 
	919 

	(6) 
	(6) 
	0.241 
	(0.006) 
	0.791 
	(0.009) 
	0.115 
	(0.032) 
	1.092 
	(0.105) 
	9488 
	1885 

	(7) 
	(7) 
	0.084 
	(0.010) 
	0.894 
	(0.013) 
	-0.050 
	(0.142) 
	1.236 
	(0.337) 
	2786 
	690 

	(8) 
	(8) 
	0.233 
	(0.022) 
	0.741 
	(0.023) 
	0.285 
	(0.059) 
	0.685 
	(0.245) 
	539 
	116 

	(9) 
	(9) 
	0.319 
	(0.021) 
	0.666 
	(0.025) 
	0.331 
	(0.122) 
	0.639 
	(0.409) 
	941 
	193 

	(10) 
	(10) 
	0.227 
	(0.012) 
	0.809 
	(0.020) 
	0.344 
	(0.051) 
	0.207 
	(0.269) 
	1773 
	449 

	(12) 
	(12) 
	0.209 
	(0.012) 
	0.785 
	(0.017) 
	0.2 
	(0.026) 
	0.801 
	(0.050) 
	2788 
	626 

	(13) 
	(13) 
	0.132 
	(0.005) 
	0.894 
	(0.009) 
	0.132 
	(0.035) 
	0.892 
	(0.201) 
	11965 
	2923 

	(16) 
	(16) 
	0.183 
	(0.041) 
	0.793 
	(0.060) 
	0.167 
	(0.579) 
	0.876 
	(1.173) 
	308 
	83 

	(17) 
	(17) 
	0.117 
	(0.023) 
	1.016 
	(0.030) 
	0.215 
	(0.230) 
	0.870 
	(0.611) 
	1051 
	223 

	(18) 
	(18) 
	0.216 
	(0.048) 
	0.752 
	(0.065) 
	0.308 
	(0.145) 
	0.696 
	(0.193) 
	270 
	64 

	(19) 
	(19) 
	0.058 
	(0.019) 
	0.874 
	(0.027) 
	0.129 
	(0.111) 
	0.809 
	(0.423) 
	1594 
	345 

	Pooled 
	Pooled 
	0.215 
	(0.002) 
	0.795 
	(0.004) 
	0.162 
	(0.005) 
	0.912 
	(0.013) 
	63908 
	12905 


	Table A4 Summary Statistics for Regression Estimates of Equation (3) 
	Table A4 Summary Statistics for Regression Estimates of Equation (3) 
	Table A4 Summary Statistics for Regression Estimates of Equation (3) 

	Variable 
	Variable 
	Mean 
	SD 
	Median 

	Log Real Industry Average Value-Added 
	Log Real Industry Average Value-Added 
	15.86 
	1.2 
	15.7 

	Total Factor Productivity (ACF Pooled) 
	Total Factor Productivity (ACF Pooled) 
	9.12 
	1.21 
	9.2 

	Total Factor Productivity (ACF Industry Specific 
	Total Factor Productivity (ACF Industry Specific 

	Estimates) 
	Estimates) 
	9.14 
	0.98 
	9.24 

	Log R&D Stock 
	Log R&D Stock 
	12.97 
	1.96 
	13.02 

	Log Intra-Industry R&D Stock 
	Log Intra-Industry R&D Stock 
	18.72 
	1.82 
	18.94 

	Log Inter-Industry R&D Stock 
	Log Inter-Industry R&D Stock 
	22.75 
	0.81 
	22.93 

	VA to R&D Stock Ratio (Y/R) 
	VA to R&D Stock Ratio (Y/R) 
	156.50 
	8939 
	3.97 

	Notes: Number of firm-year observations is 53860. Variable definitions provided in table A2 
	Notes: Number of firm-year observations is 53860. Variable definitions provided in table A2 








