World-leading Swinburne research will influence climate modelling
Acacia species in arid Australia. Credit: Mark Adams.
In summary
- Restoring acacia woodlands would be by far the best way to capture carbon from the atmosphere in outback Australia
- New data about the ability of trees and vegetation to acquire carbon and contribute to rainfall is likely to have major implications for climate modelling
- The research will help improve rainfall predictor models, especially in tropical zones
Ground-breaking research about the ability of trees and vegetation to acquire carbon and contribute to rainfall is likely to have major implications for climate modelling.
Published in one of the world’s leading science journals, the research – led by Swinburne University of Technology’s Professor of BioScience and Innovation, Mark Adams – is the culmination of three years’ work and is the third major study his group has published.
Professor Adams says their latest study shows that in dry climates like Australia, trees and other forms of vegetation respond to rising carbon dioxide in the atmosphere by increasing their efficiency in using water to acquire carbon.
'Vegetation that thrives in drier climates, like Acacia woodlands found throughout inland Australia, are particularly well placed to increase their carbon capture efficiencies,' says Professor Adams.
'They have the ability to acquire nitrogen from the atmosphere, bypassing soil nitrogen.'
Expanding data collection beyond Europe and the United States
These findings counter previous understandings of water use efficiency, which were based largely on research in Europe and the eastern USA, where humid conditions and histories of nitrogen pollution mask the underlying effects of aridity.
The majority of the world’s terrestrial surfaces are considered arid and lack the nitrogen pollution found in Europe and the USA.
Redefining climate models that predict rainfall
The Swinburne research is also significant for climate models used to predict future rainfall, which is critical for tropical regions where rainfall can be dictated by terrestrial conditions, not necessarily by oceans.
'Water use efficiency is now built into most modern climate models used to predict future rainfall. The greater understanding of how water use efficiency in trees and vegetation varies across the globe will help improve the models,' says Professor Adams.
Huge leap forward in availability of data
Data was painstakingly collected from 343 individual sources and more than 10,000 observations of the abundance of stable isotopes of carbon. The public availability of the data collected by Professor Adams and his research group will improve the scientific community’s ability to rapidly and positively influence climate modelling into the future.
Nature Communications science journal
This research was published in Nature Communications, which is an open access, multidisciplinary journal dedicated to publishing high-quality research in all areas of the biological, health, physical, chemical and Earth sciences. Papers published by the journal aim to represent important advances of significance to specialists within each field.
-
Media Enquiries
Related articles
-
- Technology
- Health
Epilepsy and high blood pressure in the sights of Swinburne’s $2.7 million in NHMRC funding
Swinburne has successfully secured $2.7 million in the latest round of National Health and Medical Research Council (NHMRC) Project Grants to address two major health concerns for millions of Australians: high blood pressure and epilepsy.
Wednesday 18 December 2024 -
- Astronomy
- Technology
- Science
Australia’s moon rover takes off with Swinburne University of Technology developing critical technology for success
Swinburne University of Technology has been selected as a research university that will deliver key technology for Australia’s first lunar rover.
Tuesday 17 December 2024 -
- Astronomy
- Education
- Science
- University
Swinburne’s Professor Matthew Bailes honoured with 2024 Prime Minister’s Prize for Science
Swinburne’s Professor Matthew Bailes has been awarded the 2024 Prime Minister’s Prize for Science for his pioneering work in astrophysics, particularly his discovery of fast radio bursts (FRBs).
Wednesday 09 October 2024 -
- Sustainability
International project makes hydrogen storage lighter for future transport
Swinburne has collaborated with the University of Stuttgart to create an innovative new hydrogen storage technology could lead to safer, lighter and faster zero emissions transport in the future.
Tuesday 15 October 2024 -
- Science
- Student News
Swinburne students demonstrate how science can solve social issues
Over 120 Swinburne University Bachelor of Science students created solutions for issues faced by City of Boroondara Council through a scientific lens, using their knowledge in biotech, chemistry, maths, data analysis, engineering and software engineering.
Thursday 26 September 2024