Robots can improve the flow of blood donations
The Swinburne team has designed a robot arm to automate the blood donation pack folding process. The arm holds the folded blood pack, which is filled with water, to demonstrate that this process can be automated.
In summary
- Swinburne researchers have proved that automation of the essential 'folding' process for blood donation packs is possible
- Automation will reduce staff injuries and human error
- The IMCRC-funded project has been extended to see if the robot can fold faster
Blood processing is largely manual.
At a processing centre, whole blood donations must be separated into its cellular components via centrifugation. To do this, the blood pack must be folded in a particular way to ensure during the process there is no bacterial contamination (which, in turn, increases shelf life).
Staff are highly trained to carry out this operation, but there are still risks and instances of human error. Damaged or torn packs not only lead to the loss of a precious donation, but also disrupt production and expose staff to potentially hazardous biological materials. Even subtle non-conformities can occur and build over time, leading to quality deviations. On the other hand, such repetitive motions – sometimes hundreds a day – can cause ergonomic strain and injury for staff.
Staff demonstrate the repetitive folding process, which can lead to both injury and human error. This process is then completed by a robot arm, vision system and more.
Can a robot do the job?
Swinburne researchers have worked to automate the folding and centrifuge-tube loading process using collaborative robotics, vision systems, jigs and actuators.
Folding is a highly complex procedure that is challenging to automate using robots. The blood packs are soft and "deformable" objects, which can lead to a significant variation in shape and geometry. This makes it difficult for a robot or computer that is not suited to the myriad of geometries.
In fact, the automation of the manipulation of soft deformable objects is a hot topic in robotics research. That’s why IMCRC was so keen to fund the project. As well as the practical, impactful social good that success could have in the blood donation space, it could be a step forward for automation and innovative manufacturing.
The Swinburne team has been looking for any automation opportunities in the process –breaking it down into smaller steps and building in design and engineering contingencies so that the final design could involve a combination of semi-automated, automated or assisted processes.
The Swinburne research team, from left to right: Ashen Vihana, Andrew Howarth, Craig Webster, Shanti Krishnan, David Smoors and Hasan Baran Kaptan.
The nuts and bolts of automation
Within three months, the team knew they could not only automate the process – but also add to the project scope.
They built a proof-of-concept robot arm that shows automation can be used to fold whole blood collection packs. But they also built in image recognition for quality inspection, data recording for traceability, anomaly detection in manually placed stickers/labels and more.
Project lead and Deputy Director of Swinburne’s Factory of the Future, Dr Shanti Krishnan, says, “I was very excited at the challenge of finding an automated innovative solution to the problem of a repetitive manual process in the medical industry, using collaborative robots and machine vision systems.
“I am proud to say that the dedicated team effort of engineering excellence and applied research at Swinburne’s Factory of the Future has resulted in the successful completion of the proof of concept design.”
The project has also been extended with a new aim: to make the robot faster. Since it’s currently much slower than a human, speed will be a crucial step to integrating this safer, more accurate process.
For the Swinburne team, the success in this project has broader ramifications.
“The findings could also be translated to other, similar processes involving soft deformable objects – with an impact on food, health, agriculture and other industries. Basically, anything dealing with packaging.”
-
Media Enquiries
Related articles
-
- Business
- Technology
Startups lead the way in innovation at 2024 Venture Cup Pitch Night
The 2024 Annual Venture Cup Pitch Night at Swinburne University of Technology celebrated the achievements of seven startups, marking the successful completion of their journey through Swinburne Innovation Studio's accelerator initiative, the Elevate Program.
Monday 02 December 2024 -
- Technology
- Health
Epilepsy and high blood pressure in the sights of Swinburne’s $2.7 million in NHMRC funding
Swinburne has successfully secured $2.7 million in the latest round of National Health and Medical Research Council (NHMRC) Project Grants to address two major health concerns for millions of Australians: high blood pressure and epilepsy.
Wednesday 18 December 2024 -
- Astronomy
- Technology
- Science
Australia’s moon rover takes off with Swinburne University of Technology developing critical technology for success
Swinburne University of Technology has been selected as a research university that will deliver key technology for Australia’s first lunar rover.
Tuesday 17 December 2024 -
- Engineering
As earthquakes continue to destroy infrastructure around the world, these researchers are making our buildings more earthquake resistant
Infrastructure around the world is not made to cope with earthquakes, but Swinburne researchers are paving the way to make buildings earthquake resistant, thanks to their work in concrete engineering.
Thursday 19 December 2024 -
- Design
- Student News
- Technology
- Business
Creative Intersections: Building a better world through creativity and technology
Creative Intersections showcases the innovative fusion of creativity and technology, highlighting Swinburne VET students' achievements through exhibitions, workshops, and screenings at ACMI from 6–8 December 2024.
Wednesday 04 December 2024