What are gravitational waves?
3D visualisation of gravitational waves produced by two orbiting black holes. Image: Henze/NASA
In summary
Analysis for The Conversation Curious Kids section by Dr Sara Webb from the Centre of Astrophysics and Supercomputing
What are gravitational waves? – Millie, age 10, Sydney
What a great question Millie!
To answer this we have to travel back in time, to the year 1916. This is the year famous physicist Albert Einstein published his general theory of relativity.
Einstein had figured out how to explain gravity within the Universe using maths. Gravity is the force that keeps us on Earth, and Earth orbiting around the Sun. Until 1916 there had been many theories to try and explain what gravity was and why it exists. But Einstein suggested that gravity was the bending of something called space-time.
You can think of space-time like the fabric of the Universe. It’s what makes up the space we live in. Without it we wouldn’t have a Universe, and that wouldn’t be very fun.
A space-time trampoline
Curved space-time is responsible for the effects of gravity. A trampoline is a great way for us to picture this on a flat surface.
Imagine you place a heavy bowling ball in the centre of a trampoline – its mass bends the fabric, and it creates a dip. Now, if we tried to roll a marble across the trampoline, it would roll inwards and around the bowling ball.
That’s all gravity is: the distortion of the space-time fabric, affecting how things move.
If a heavy thing like a bowling ball stretches the trampoline, a marble will roll towards it in a circle. Image: Author provided
This is what Einstein’s famous equations helped to explain – how we can expect space-time to move under different conditions. We know that in the Universe, nothing stands still. Everything is always moving, and when objects speed up through space-time, they can create small ripples, just like a pebble in a pond.
These ripples are what we call gravitational waves. Our Universe is likely full of these tiny waves, like an ocean with waves moving in all different directions.
But unlike the ocean, gravitational waves are incredibly small and won’t be rocking Earth about. When first predicted by Einstein, he doubted if we’d ever be able to detect them because of how teeny tiny they should be.
I would love to know what he would think today. Not only have we detected gravitational waves, but we’ve detected 90 unique events! This is one of the biggest achievements in physics, and how they did it was nothing short of amazing.
Squeeze and stretch
When a gravitational wave passes through Earth, it squeezes or stretches the whole planet in the direction it travels. If we tried to measure it with something like a ruler, the ruler would appear to be the same length because the numbers on the ruler would also be stretched or squeezed, and wouldn’t change.
But scientists have a trick: they can use light, because light can only travel a certain distance over a certain time. If space is stretched out, the light has to travel a little bit farther, and takes longer. Vice versa for when space in squeezed.
The trick to knowing if space has been squeezed or stretched is to measure it in two directions, and calculate the difference. Unfortunately for us it isn’t something that is easy to measure.
The difference in the distance we’re looking for is 1,000 times smaller then a really tiny particle called a proton. To really blow your mind, our bodies have around 10 octillion protons (10,000,000,000,000,000,000,000,000,000).
It’s an insanely small change we needed to detect, but thankfully clever scientists and engineers figured out a way to do it, and you can learn more about these detectors in the video below.
Gravitational waves have given us new eyes to our Universe, allowing us to “see” things like black holes and neutron stars crashing together – because we can finally detect the tiny ripples they create.
This article was originally published on The Conversation.
-
Media Enquiries
Related articles
-
- Technology
- Health
Epilepsy and high blood pressure in the sights of Swinburne’s $2.7 million in NHMRC funding
Swinburne has successfully secured $2.7 million in the latest round of National Health and Medical Research Council (NHMRC) Project Grants to address two major health concerns for millions of Australians: high blood pressure and epilepsy.
Wednesday 18 December 2024 -
- Astronomy
- Technology
- Science
Australia’s moon rover takes off with Swinburne University of Technology developing critical technology for success
Swinburne University of Technology has been selected as a research university that will deliver key technology for Australia’s first lunar rover.
Tuesday 17 December 2024 -
- Astronomy
Swinburne astrophysicist Dr Rebecca Davies named a 2024 Superstar of STEM
Wednesday 11 December 2024 -
- Astronomy
New map of the universe uses gravitational waves to reveal hidden black holes and cosmic structure
Tuesday 03 December 2024 -
- Astronomy
- Education
- Science
- University
Swinburne’s Professor Matthew Bailes honoured with 2024 Prime Minister’s Prize for Science
Swinburne’s Professor Matthew Bailes has been awarded the 2024 Prime Minister’s Prize for Science for his pioneering work in astrophysics, particularly his discovery of fast radio bursts (FRBs).
Wednesday 09 October 2024